trunk/src/mame/video/hng64.c
| r244700 | r244701 | |
| 2 | 2 | #include "drawgfxm.h" |
| 3 | 3 | #include "includes/hng64.h" |
| 4 | 4 | |
| 5 | | #define MAKE_MAME_REEEEAAALLLL_SLOW 0 |
| 5 | #define BLEND_TEST 0 |
| 6 | 6 | |
| 7 | 7 | |
| 8 | 8 | |
| 9 | 9 | |
| 10 | | void hng64_state::hng64_mark_all_tiles_dirty( int tilemap ) |
| 11 | | { |
| 12 | | m_tilemap[tilemap].m_tilemap_8x8->mark_all_dirty(); |
| 13 | | m_tilemap[tilemap].m_tilemap_16x16->mark_all_dirty(); |
| 14 | | m_tilemap[tilemap].m_tilemap_16x16_alt->mark_all_dirty(); |
| 15 | | } |
| 16 | 10 | |
| 17 | | void hng64_state::hng64_mark_tile_dirty( int tilemap, int tile_index ) |
| 18 | | { |
| 19 | | m_tilemap[tilemap].m_tilemap_8x8->mark_tile_dirty(tile_index); |
| 20 | | m_tilemap[tilemap].m_tilemap_16x16->mark_tile_dirty(tile_index); |
| 21 | | m_tilemap[tilemap].m_tilemap_16x16_alt->mark_tile_dirty(tile_index); |
| 22 | | } |
| 23 | 11 | |
| 24 | | |
| 25 | | /* |
| 26 | | * Sprite Format |
| 27 | | * ------------------ |
| 28 | | * |
| 29 | | * UINT32 | Bits | Use |
| 30 | | * | 3322 2222 2222 1111 1111 11 | |
| 31 | | * -------+-1098-7654-3210-9876-5432-1098-7654-3210-+---------------- |
| 32 | | * 0 | yyyy yyyy yyyy yyyy xxxx xxxx xxxx xxxx | x/y position |
| 33 | | * 1 | YYYY YYYY YYYY YYYY XXXX XXXX XXXX XXXX | x/y zoom (*) |
| 34 | | * 2 | ---- -zzz zzzz zzzz ---- ---I cccc CCCC | Z-buffer value, 'Inline' chain flag, x/y chain |
| 35 | | * 3 | ---- ---- pppp pppp ---- ---- ---- ---- | palette entry |
| 36 | | * 4 | mmmm -?fF a??? tttt tttt tttt tttt tttt | mosaic factor, unknown (**) , flip bits, additive blending, unknown (***), tile number |
| 37 | | * 5 | ---- ---- ---- ---- ---- ---- ---- ---- | not used ?? |
| 38 | | * 6 | ---- ---- ---- ---- ---- ---- ---- ---- | not used ?? |
| 39 | | * 7 | ---- ---- ---- ---- ---- ---- ---- ---- | not used ?? |
| 40 | | * |
| 41 | | * (*) Fatal Fury WA standard elements are 0x1000-0x1000, all the other games sets 0x100-0x100, related to the bit 27 of sprite regs 0? |
| 42 | | * (**) setted by black squares in ranking screen in Samurai Shodown 64 1, sprite disable? |
| 43 | | * (***) bit 22 is setted on some Fatal Fury WA snow (not all of them), bit 21 is setted on Xrally how to play elements in attract mode |
| 44 | | * |
| 45 | | * Sprite Global Registers |
| 46 | | * ----------------------- |
| 47 | | * |
| 48 | | * UINT32 | Bits | Use |
| 49 | | * | 3322 2222 2222 1111 1111 11 | |
| 50 | | * -------+-1098-7654-3210-9876-5432-1098-7654-3210-+---------------- |
| 51 | | * 0 | ---- z--- b--- ---- ---- ---- ---- ---- | zooming mode, bpp select |
| 52 | | * 1 | yyyy yyyy yyyy yyyy xxxx xxxx xxxx xxxx | global sprite offset (ss64 rankings in attract) |
| 53 | | * 2 | ---- ---- ---- ---- ---- ---- ---- ---- | |
| 54 | | * 3 | ---- ---- ---- ---- ---- ---- ---- ---- | |
| 55 | | * 4 | ---- ---- ---- ---- ---- ---- ---- ---- | |
| 56 | | * (anything else is unknown at the current time) |
| 57 | | * Notes: |
| 58 | | * [0] |
| 59 | | * 0xf0000000 setted in both Samurai Shodown |
| 60 | | * 0x00060000 always setted in all the games |
| 61 | | * 0x00010000 setted in POST, sprite disable? |
| 62 | | * [4] |
| 63 | | * 0x0e0 in Samurai Shodown/Xrally games, 0x1c0 in all the others, zooming factor? |
| 64 | | */ |
| 65 | | |
| 66 | | void hng64_state::draw_sprites(screen_device &screen, bitmap_rgb32 &bitmap, const rectangle &cliprect) |
| 67 | | { |
| 68 | | gfx_element *gfx; |
| 69 | | UINT32 *source = m_spriteram; |
| 70 | | UINT32 *finish = m_spriteram + 0xc000/4; |
| 71 | | |
| 72 | | // global offsets in sprite regs |
| 73 | | int spriteoffsx = (m_spriteregs[1]>>0)&0xffff; |
| 74 | | int spriteoffsy = (m_spriteregs[1]>>16)&0xffff; |
| 75 | | |
| 76 | | #if 0 |
| 77 | | for (int iii = 0; iii < 0x0f; iii++) |
| 78 | | osd_printf_debug("%.8x ", m_videoregs[iii]); |
| 79 | | osd_printf_debug("\n"); |
| 80 | | #endif |
| 81 | | |
| 82 | | while( source<finish ) |
| 83 | | { |
| 84 | | int tileno,chainx,chainy,xflip; |
| 85 | | int pal,xinc,yinc,yflip; |
| 86 | | UINT16 xpos, ypos; |
| 87 | | int xdrw,ydrw; |
| 88 | | int chaini; |
| 89 | | int zbuf; |
| 90 | | UINT32 zoomx,zoomy; |
| 91 | | float foomX, foomY; |
| 92 | | int blend; |
| 93 | | int disable; |
| 94 | | |
| 95 | | |
| 96 | | |
| 97 | | ypos = (source[0]&0xffff0000)>>16; |
| 98 | | xpos = (source[0]&0x0000ffff)>>0; |
| 99 | | xpos += (spriteoffsx); |
| 100 | | ypos += (spriteoffsy); |
| 101 | | |
| 102 | | tileno= (source[4]&0x0007ffff); |
| 103 | | blend= (source[4]&0x00800000); |
| 104 | | yflip= (source[4]&0x01000000)>>24; |
| 105 | | xflip= (source[4]&0x02000000)>>25; |
| 106 | | disable=(source[4]&0x04000000)>>26; // ss64 rankings? |
| 107 | | |
| 108 | | pal =(source[3]&0x00ff0000)>>16; |
| 109 | | |
| 110 | | chainy=(source[2]&0x0000000f); |
| 111 | | chainx=(source[2]&0x000000f0)>>4; |
| 112 | | chaini=(source[2]&0x00000100); |
| 113 | | zbuf = (source[2]&0x07ff0000)>>16; //? |
| 114 | | |
| 115 | | zoomy = (source[1]&0xffff0000)>>16; |
| 116 | | zoomx = (source[1]&0x0000ffff)>>0; |
| 117 | | |
| 118 | | #if 1 |
| 119 | | if(zbuf == 0x7ff) //temp kludge to avoid garbage on screen |
| 120 | | { |
| 121 | | source+=8; |
| 122 | | continue; |
| 123 | | } |
| 124 | | #endif |
| 125 | | if(disable) |
| 126 | | { |
| 127 | | source+=8; |
| 128 | | continue; |
| 129 | | } |
| 130 | | |
| 131 | | #if 0 |
| 132 | | if (!(source[4] == 0x00000000 || source[4] == 0x000000aa)) |
| 133 | | osd_printf_debug("unknown : %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x \n", source[0], source[1], source[2], source[3], |
| 134 | | source[4], source[5], source[6], source[7]); |
| 135 | | #endif |
| 136 | | |
| 137 | | /* Calculate the zoom */ |
| 138 | | { |
| 139 | | int zoom_factor; |
| 140 | | |
| 141 | | /* FIXME: regular zoom mode has precision bugs, can be easily seen in Samurai Shodown 64 intro */ |
| 142 | | zoom_factor = (m_spriteregs[0] & 0x08000000) ? 0x1000 : 0x100; |
| 143 | | if(!zoomx) zoomx=zoom_factor; |
| 144 | | if(!zoomy) zoomy=zoom_factor; |
| 145 | | |
| 146 | | /* First, prevent any possible divide by zero errors */ |
| 147 | | foomX = (float)(zoom_factor) / (float)zoomx; |
| 148 | | foomY = (float)(zoom_factor) / (float)zoomy; |
| 149 | | |
| 150 | | zoomx = ((int)foomX) << 16; |
| 151 | | zoomy = ((int)foomY) << 16; |
| 152 | | |
| 153 | | zoomx += (int)((foomX - floor(foomX)) * (float)0x10000); |
| 154 | | zoomy += (int)((foomY - floor(foomY)) * (float)0x10000); |
| 155 | | } |
| 156 | | |
| 157 | | if (m_spriteregs[0] & 0x00800000) //bpp switch |
| 158 | | { |
| 159 | | gfx= m_gfxdecode->gfx(4); |
| 160 | | } |
| 161 | | else |
| 162 | | { |
| 163 | | gfx= m_gfxdecode->gfx(5); |
| 164 | | tileno>>=1; |
| 165 | | pal&=0xf; |
| 166 | | } |
| 167 | | |
| 168 | | // Accommodate for chaining and flipping |
| 169 | | if(xflip) |
| 170 | | { |
| 171 | | xinc=-(int)(16.0f*foomX); |
| 172 | | xpos-=xinc*chainx; |
| 173 | | } |
| 174 | | else |
| 175 | | { |
| 176 | | xinc=(int)(16.0f*foomX); |
| 177 | | } |
| 178 | | |
| 179 | | if(yflip) |
| 180 | | { |
| 181 | | yinc=-(int)(16.0f*foomY); |
| 182 | | ypos-=yinc*chainy; |
| 183 | | } |
| 184 | | else |
| 185 | | { |
| 186 | | yinc=(int)(16.0f*foomY); |
| 187 | | } |
| 188 | | |
| 189 | | #if 0 |
| 190 | | if (((source[2) & 0xffff0000) >> 16) == 0x0001) |
| 191 | | { |
| 192 | | popmessage("T %.8x %.8x %.8x %.8x %.8x", source[0], source[1], source[2], source[3], source[4]); |
| 193 | | //popmessage("T %.8x %.8x %.8x %.8x %.8x", source[0], source[1], source[2], source[3], source[4]); |
| 194 | | } |
| 195 | | #endif |
| 196 | | |
| 197 | | for(ydrw=0;ydrw<=chainy;ydrw++) |
| 198 | | { |
| 199 | | for(xdrw=0;xdrw<=chainx;xdrw++) |
| 200 | | { |
| 201 | | INT16 drawx = xpos+(xinc*xdrw); |
| 202 | | INT16 drawy = ypos+(yinc*ydrw); |
| 203 | | |
| 204 | | // 0x3ff (0x200 sign bit) based on sams64_2 char select |
| 205 | | drawx &= 0x3ff; |
| 206 | | drawy &= 0x3ff; |
| 207 | | |
| 208 | | if (drawx&0x0200)drawx-=0x400; |
| 209 | | if (drawy&0x0200)drawy-=0x400; |
| 210 | | |
| 211 | | if (!chaini) |
| 212 | | { |
| 213 | | if (!blend) gfx->prio_zoom_transpen(bitmap,cliprect,tileno,pal,xflip,yflip,drawx,drawy,zoomx,zoomy/*0x10000*/,screen.priority(), 0,0); |
| 214 | | else gfx->prio_zoom_transpen_additive(bitmap,cliprect,tileno,pal,xflip,yflip,drawx,drawy,zoomx,zoomy/*0x10000*/,screen.priority(), 0,0); |
| 215 | | tileno++; |
| 216 | | } |
| 217 | | else // inline chain mode, used by ss64 |
| 218 | | { |
| 219 | | tileno=(source[4]&0x0007ffff); |
| 220 | | pal =(source[3]&0x00ff0000)>>16; |
| 221 | | |
| 222 | | if (m_spriteregs[0] & 0x00800000) //bpp switch |
| 223 | | { |
| 224 | | gfx= m_gfxdecode->gfx(4); |
| 225 | | } |
| 226 | | else |
| 227 | | { |
| 228 | | gfx= m_gfxdecode->gfx(5); |
| 229 | | tileno>>=1; |
| 230 | | pal&=0xf; |
| 231 | | } |
| 232 | | |
| 233 | | if (!blend) gfx->prio_zoom_transpen(bitmap,cliprect,tileno,pal,xflip,yflip,drawx,drawy,zoomx,zoomy/*0x10000*/,screen.priority(), 0,0); |
| 234 | | else gfx->prio_zoom_transpen_additive(bitmap,cliprect,tileno,pal,xflip,yflip,drawx,drawy,zoomx,zoomy/*0x10000*/,screen.priority(), 0,0); |
| 235 | | source +=8; |
| 236 | | } |
| 237 | | |
| 238 | | } |
| 239 | | } |
| 240 | | |
| 241 | | if (!chaini) source +=8; |
| 242 | | } |
| 243 | | } |
| 244 | | |
| 245 | | |
| 246 | 12 | /* Transition Control Video Registers |
| 247 | 13 | * ---------------------------------- |
| 248 | 14 | * |
| r244700 | r244701 | |
| 378 | 144 | } |
| 379 | 145 | } |
| 380 | 146 | |
| 147 | |
| 148 | |
| 149 | void hng64_state::hng64_mark_all_tiles_dirty( int tilemap ) |
| 150 | { |
| 151 | m_tilemap[tilemap].m_tilemap_8x8->mark_all_dirty(); |
| 152 | m_tilemap[tilemap].m_tilemap_16x16->mark_all_dirty(); |
| 153 | m_tilemap[tilemap].m_tilemap_16x16_alt->mark_all_dirty(); |
| 154 | } |
| 155 | |
| 156 | void hng64_state::hng64_mark_tile_dirty( int tilemap, int tile_index ) |
| 157 | { |
| 158 | m_tilemap[tilemap].m_tilemap_8x8->mark_tile_dirty(tile_index); |
| 159 | m_tilemap[tilemap].m_tilemap_16x16->mark_tile_dirty(tile_index); |
| 160 | m_tilemap[tilemap].m_tilemap_16x16_alt->mark_tile_dirty(tile_index); |
| 161 | } |
| 162 | |
| 163 | |
| 381 | 164 | // make this a function! |
| 382 | 165 | // pppppppp ff--atttt tttttttt tttttttt |
| 383 | 166 | #define HNG64_GET_TILE_INFO \ |
| r244700 | r244701 | |
| 1022 | 805 | |
| 1023 | 806 | |
| 1024 | 807 | /* manual copy = slooow */ |
| 1025 | | if (MAKE_MAME_REEEEAAALLLL_SLOW) |
| 808 | if (BLEND_TEST) |
| 1026 | 809 | { |
| 1027 | 810 | bitmap_ind16 &bm = tilemap->pixmap(); |
| 1028 | 811 | int bmheight = bm.height(); |
| r244700 | r244701 | |
| 1118 | 901 | yinc = (ymiddle - ytopleft) / 512; |
| 1119 | 902 | |
| 1120 | 903 | /* manual copy = slooow */ |
| 1121 | | if (MAKE_MAME_REEEEAAALLLL_SLOW) |
| 904 | if (BLEND_TEST) |
| 1122 | 905 | { |
| 1123 | 906 | bitmap_ind16 &bm = tilemap->pixmap(); |
| 1124 | 907 | int bmheight = bm.height(); |
| r244700 | r244701 | |
| 1460 | 1243 | // 3d Buffer Allocation |
| 1461 | 1244 | m_depthBuffer3d = auto_alloc_array(machine(), float, (visarea.max_x + 1)*(visarea.max_y + 1)); |
| 1462 | 1245 | m_colorBuffer3d = auto_alloc_array(machine(), UINT32, (visarea.max_x + 1)*(visarea.max_y + 1)); |
| 1463 | | } |
| 1464 | 1246 | |
| 1465 | 1247 | |
| 1466 | | /////////////// |
| 1467 | | // 3d Engine // |
| 1468 | | /////////////// |
| 1248 | m_dl = auto_alloc_array(machine(), UINT16, 0x200/2); |
| 1469 | 1249 | |
| 1470 | | struct polyVert |
| 1471 | | { |
| 1472 | | float worldCoords[4]; // World space coordinates (X Y Z 1.0) |
| 1473 | | |
| 1474 | | float texCoords[4]; // Texture coordinates (U V 0 1.0) -> OpenGL style... |
| 1475 | | |
| 1476 | | float normal[4]; // Normal (X Y Z 1.0) |
| 1477 | | float clipCoords[4]; // Homogeneous screen space coordinates (X Y Z W) |
| 1478 | | |
| 1479 | | float light[3]; // The intensity of the illumination at this point |
| 1480 | | }; |
| 1481 | | |
| 1482 | | struct polygon |
| 1483 | | { |
| 1484 | | int n; // Number of sides |
| 1485 | | struct polyVert vert[10]; // Vertices (maximum number per polygon is 10 -> 3+6) |
| 1486 | | |
| 1487 | | float faceNormal[4]; // Normal of the face overall - for calculating visibility and flat-shading... |
| 1488 | | int visible; // Polygon visibility in scene |
| 1489 | | |
| 1490 | | UINT8 texIndex; // Which texture to draw from (0x00-0x0f) |
| 1491 | | UINT8 texType; // How to index into the texture |
| 1492 | | UINT8 texPageSmall; // Does this polygon use 'small' texture pages? |
| 1493 | | UINT8 texPageHorizOffset; // If it does use small texture pages, how far is this page horizontally offset? |
| 1494 | | UINT8 texPageVertOffset; // If it does use small texture pages, how far is this page vertically offset? |
| 1495 | | |
| 1496 | | UINT32 palOffset; // The base offset where this object's palette starts. |
| 1497 | | UINT32 palPageSize; // The size of the palette page that is being pointed to. |
| 1498 | | |
| 1499 | | UINT32 debugColor; // Will go away someday. Used to explicitly color polygons for debugging. |
| 1500 | | }; |
| 1501 | | |
| 1502 | | static void setIdentity(float *matrix); |
| 1503 | | static void matmul4(float *product, const float *a, const float *b); |
| 1504 | | static void vecmatmul4(float *product, const float *a, const float *b); |
| 1505 | | static float vecDotProduct(const float *a, const float *b); |
| 1506 | | static void normalize(float* x); |
| 1507 | | static void performFrustumClip(struct polygon *p); |
| 1508 | | static float uToF(UINT16 input); |
| 1509 | | |
| 1510 | | |
| 1511 | | //////////////////// |
| 1512 | | // 3d 'Functions' // |
| 1513 | | //////////////////// |
| 1514 | | |
| 1515 | | static void printPacket(const UINT16* packet, int hex) |
| 1516 | | { |
| 1517 | | if (hex) |
| 1518 | | { |
| 1519 | | printf("Packet : %04x %04x 2:%04x %04x 4:%04x %04x 6:%04x %04x 8:%04x %04x 10:%04x %04x 12:%04x %04x 14:%04x %04x\n", |
| 1520 | | packet[0], packet[1], |
| 1521 | | packet[2], packet[3], |
| 1522 | | packet[4], packet[5], |
| 1523 | | packet[6], packet[7], |
| 1524 | | packet[8], packet[9], |
| 1525 | | packet[10], packet[11], |
| 1526 | | packet[12], packet[13], |
| 1527 | | packet[14], packet[15]); |
| 1528 | | } |
| 1529 | | else |
| 1530 | | { |
| 1531 | | printf("Packet : %04x %3.4f 2:%3.4f %3.4f 4:%3.4f %3.4f 6:%3.4f %3.4f 8:%3.4f %3.4f 10:%3.4f %3.4f 12:%3.4f %3.4f 14:%3.4f %3.4f\n", |
| 1532 | | packet[0], uToF(packet[1] )*128, |
| 1533 | | uToF(packet[2] )*128, uToF(packet[3] )*128, |
| 1534 | | uToF(packet[4] )*128, uToF(packet[5] )*128, |
| 1535 | | uToF(packet[6] )*128, uToF(packet[7] )*128, |
| 1536 | | uToF(packet[8] )*128, uToF(packet[9] )*128, |
| 1537 | | uToF(packet[10])*128, uToF(packet[11])*128, |
| 1538 | | uToF(packet[12])*128, uToF(packet[13])*128, |
| 1539 | | uToF(packet[14])*128, uToF(packet[15])*128); |
| 1540 | | } |
| 1250 | m_texturerom = memregion("textures")->base(); |
| 1251 | m_vertsrom = (UINT16*)memregion("verts")->base(); |
| 1252 | m_vertsrom_size = memregion("verts")->bytes(); |
| 1541 | 1253 | } |
| 1542 | 1254 | |
| 1543 | | // Operation 0001 |
| 1544 | | // Camera transformation. |
| 1545 | | void hng64_state::setCameraTransformation(const UINT16* packet) |
| 1546 | | { |
| 1547 | | float *cameraMatrix = m_cameraMatrix; |
| 1548 | | |
| 1549 | | /*////////////// |
| 1550 | | // PACKET FORMAT |
| 1551 | | // [0] - 0001 ... ID |
| 1552 | | // [1] - xxxx ... Extrinsic camera matrix |
| 1553 | | // [2] - xxxx ... Extrinsic camera matrix |
| 1554 | | // [3] - xxxx ... Extrinsic camera matrix |
| 1555 | | // [4] - xxxx ... Extrinsic camera matrix |
| 1556 | | // [5] - xxxx ... Extrinsic camera matrix |
| 1557 | | // [6] - xxxx ... Extrinsic camera matrix |
| 1558 | | // [7] - xxxx ... Extrinsic camera matrix |
| 1559 | | // [8] - xxxx ... Extrinsic camera matrix |
| 1560 | | // [9] - xxxx ... Extrinsic camera matrix |
| 1561 | | // [10] - xxxx ... Extrinsic camera matrix |
| 1562 | | // [11] - xxxx ... Extrinsic camera matrix |
| 1563 | | // [12] - xxxx ... Extrinsic camera matrix |
| 1564 | | // [13] - ???? ... ? Flips per-frame during fatfurwa 'HNG64' |
| 1565 | | // [14] - ???? ... ? Could be some floating-point values during buriki 'door run' |
| 1566 | | // [15] - ???? ... ? Same as 13 & 14 |
| 1567 | | ////////////*/ |
| 1568 | | // CAMERA TRANSFORMATION MATRIX |
| 1569 | | cameraMatrix[0] = uToF(packet[1]); |
| 1570 | | cameraMatrix[4] = uToF(packet[2]); |
| 1571 | | cameraMatrix[8] = uToF(packet[3]); |
| 1572 | | cameraMatrix[3] = 0.0f; |
| 1573 | | |
| 1574 | | cameraMatrix[1] = uToF(packet[4]); |
| 1575 | | cameraMatrix[5] = uToF(packet[5]); |
| 1576 | | cameraMatrix[9] = uToF(packet[6]); |
| 1577 | | cameraMatrix[7] = 0.0f; |
| 1578 | | |
| 1579 | | cameraMatrix[2] = uToF(packet[7]); |
| 1580 | | cameraMatrix[6] = uToF(packet[8]); |
| 1581 | | cameraMatrix[10] = uToF(packet[9]); |
| 1582 | | cameraMatrix[11] = 0.0f; |
| 1583 | | |
| 1584 | | cameraMatrix[12] = uToF(packet[10]); |
| 1585 | | cameraMatrix[13] = uToF(packet[11]); |
| 1586 | | cameraMatrix[14] = uToF(packet[12]); |
| 1587 | | cameraMatrix[15] = 1.0f; |
| 1588 | | } |
| 1589 | | |
| 1590 | | // Operation 0010 |
| 1591 | | // Lighting information |
| 1592 | | void hng64_state::setLighting(const UINT16* packet) |
| 1593 | | { |
| 1594 | | float *lightVector = m_lightVector; |
| 1595 | | |
| 1596 | | /*////////////// |
| 1597 | | // PACKET FORMAT |
| 1598 | | // [0] - 0010 ... ID |
| 1599 | | // [1] - ???? ... ? Always zero |
| 1600 | | // [2] - ???? ... ? Always zero |
| 1601 | | // [3] - xxxx ... X light vector direction |
| 1602 | | // [4] - xxxx ... Y light vector direction |
| 1603 | | // [5] - xxxx ... Z light vector direction |
| 1604 | | // [6] - ???? ... ? Seems to be another light vector ? |
| 1605 | | // [7] - ???? ... ? Seems to be another light vector ? |
| 1606 | | // [8] - ???? ... ? Seems to be another light vector ? |
| 1607 | | // [9] - xxxx ... Strength according to sams64_2 [0000,01ff] |
| 1608 | | // [10] - ???? ... ? Used in fatfurwa |
| 1609 | | // [11] - ???? ... ? Used in fatfurwa |
| 1610 | | // [12] - ???? ... ? Used in fatfurwa |
| 1611 | | // [13] - ???? ... ? Used in fatfurwa |
| 1612 | | // [14] - ???? ... ? Used in fatfurwa |
| 1613 | | // [15] - ???? ... ? Used in fatfurwa |
| 1614 | | ////////////*/ |
| 1615 | | if (packet[1] != 0x0000) printf("ZOMG! packet[1] in setLighting function is non-zero!\n"); |
| 1616 | | if (packet[2] != 0x0000) printf("ZOMG! packet[2] in setLighting function is non-zero!\n"); |
| 1617 | | |
| 1618 | | lightVector[0] = uToF(packet[3]); |
| 1619 | | lightVector[1] = uToF(packet[4]); |
| 1620 | | lightVector[2] = uToF(packet[5]); |
| 1621 | | m_lightStrength = uToF(packet[9]); |
| 1622 | | } |
| 1623 | | |
| 1624 | | // Operation 0011 |
| 1625 | | // Palette / Model flags? |
| 1626 | | void hng64_state::set3dFlags(const UINT16* packet) |
| 1627 | | { |
| 1628 | | /*////////////// |
| 1629 | | // PACKET FORMAT |
| 1630 | | // [0] - 0011 ... ID |
| 1631 | | // [1] - ???? ... |
| 1632 | | // [2] - ???? ... |
| 1633 | | // [3] - ???? ... |
| 1634 | | // [4] - ???? ... |
| 1635 | | // [5] - ???? ... |
| 1636 | | // [6] - ???? ... |
| 1637 | | // [7] - ???? ... |
| 1638 | | // [8] - xx?? ... Palette offset & ?? |
| 1639 | | // [9] - ???? ... ? Very much used - seem to bounce around when characters are on screen |
| 1640 | | // [10] - ???? ... ? '' '' |
| 1641 | | // [11] - ???? ... ? '' '' |
| 1642 | | // [12] - ???? ... ? '' '' |
| 1643 | | // [13] - ???? ... ? '' '' |
| 1644 | | // [14] - ???? ... ? '' '' |
| 1645 | | // [15] - ???? ... ? '' '' |
| 1646 | | ////////////*/ |
| 1647 | | m_paletteState3d = (packet[8] & 0xff00) >> 8; |
| 1648 | | } |
| 1649 | | |
| 1650 | | // Operation 0012 |
| 1651 | | // Projection Matrix. |
| 1652 | | void hng64_state::setCameraProjectionMatrix(const UINT16* packet) |
| 1653 | | { |
| 1654 | | float *projectionMatrix = m_projectionMatrix; |
| 1655 | | |
| 1656 | | /*////////////// |
| 1657 | | // PACKET FORMAT |
| 1658 | | // [0] - 0012 ... ID |
| 1659 | | // [1] - ???? ... ? Contains a value in buriki's 'how to play' - probably a projection window/offset. |
| 1660 | | // [2] - ???? ... ? Contains a value in buriki's 'how to play' - probably a projection window/offset. |
| 1661 | | // [3] - ???? ... ? Contains a value |
| 1662 | | // [4] - xxxx ... Camera projection near scale |
| 1663 | | // [5] - xxxx ... Camera projection near height(?) |
| 1664 | | // [6] - xxxx ... Camera projection near width(?) |
| 1665 | | // [7] - xxxx ... Camera projection far scale |
| 1666 | | // [8] - xxxx ... Camera projection far height(?) |
| 1667 | | // [9] - xxxx ... Camera projection far width(?) |
| 1668 | | // [10] - xxxx ... Camera projection right |
| 1669 | | // [11] - xxxx ... Camera projection left |
| 1670 | | // [12] - xxxx ... Camera projection top |
| 1671 | | // [13] - xxxx ... Camera projection bottom |
| 1672 | | // [14] - ???? ... ? Gets data during buriki door-run |
| 1673 | | // [15] - ???? ... ? Gets data during buriki door-run |
| 1674 | | ////////////*/ |
| 1675 | | |
| 1676 | | // Heisted from GLFrustum - 6 parameters... |
| 1677 | | float left, right, top, bottom, near_, far_; |
| 1678 | | |
| 1679 | | left = uToF(packet[11]); |
| 1680 | | right = uToF(packet[10]); |
| 1681 | | top = uToF(packet[12]); |
| 1682 | | bottom = uToF(packet[13]); |
| 1683 | | near_ = uToF(packet[6]) + (uToF(packet[6]) * uToF(packet[4])); |
| 1684 | | far_ = uToF(packet[9]) + (uToF(packet[9]) * uToF(packet[7])); |
| 1685 | | // (note are likely not 100% correct - I'm not using one of the parameters) |
| 1686 | | |
| 1687 | | projectionMatrix[0] = (2.0f*near_)/(right-left); |
| 1688 | | projectionMatrix[1] = 0.0f; |
| 1689 | | projectionMatrix[2] = 0.0f; |
| 1690 | | projectionMatrix[3] = 0.0f; |
| 1691 | | |
| 1692 | | projectionMatrix[4] = 0.0f; |
| 1693 | | projectionMatrix[5] = (2.0f*near_)/(top-bottom); |
| 1694 | | projectionMatrix[6] = 0.0f; |
| 1695 | | projectionMatrix[7] = 0.0f; |
| 1696 | | |
| 1697 | | projectionMatrix[8] = (right+left)/(right-left); |
| 1698 | | projectionMatrix[9] = (top+bottom)/(top-bottom); |
| 1699 | | projectionMatrix[10] = -((far_+near_)/(far_-near_)); |
| 1700 | | projectionMatrix[11] = -1.0f; |
| 1701 | | |
| 1702 | | projectionMatrix[12] = 0.0f; |
| 1703 | | projectionMatrix[13] = 0.0f; |
| 1704 | | projectionMatrix[14] = -((2.0f*far_*near_)/(far_-near_)); |
| 1705 | | projectionMatrix[15] = 0.0f; |
| 1706 | | } |
| 1707 | | |
| 1708 | | // Operation 0100 |
| 1709 | | // Polygon rasterization. |
| 1710 | | void hng64_state::recoverPolygonBlock(const UINT16* packet, struct polygon* polys, int* numPolys) |
| 1711 | | { |
| 1712 | | /*////////////// |
| 1713 | | // PACKET FORMAT |
| 1714 | | // [0] - 0100 ... ID |
| 1715 | | // [1] - ?--- ... Flags [?000 = ??? |
| 1716 | | // 0?00 = ??? |
| 1717 | | // 00?0 = ??? |
| 1718 | | // 000? = ???] |
| 1719 | | // [1] - -?-- ... Flags [?000 = ??? |
| 1720 | | // 0?00 = ??? |
| 1721 | | // 00?0 = ??? |
| 1722 | | // 000x = Dynamic palette bit] |
| 1723 | | // [1] - --?- ... Flags [?000 = ??? |
| 1724 | | // 0?00 = ??? |
| 1725 | | // 00?0 = ??? |
| 1726 | | // 000? = ???] |
| 1727 | | // [1] - ---? ... Flags [x000 = Apply lighting bit |
| 1728 | | // 0?00 = ??? |
| 1729 | | // 00?0 = ??? |
| 1730 | | // 000? = ???] |
| 1731 | | // [2] - xxxx ... offset into ROM |
| 1732 | | // [3] - xxxx ... offset into ROM |
| 1733 | | // [4] - xxxx ... Transformation matrix |
| 1734 | | // [5] - xxxx ... Transformation matrix |
| 1735 | | // [6] - xxxx ... Transformation matrix |
| 1736 | | // [7] - xxxx ... Transformation matrix |
| 1737 | | // [8] - xxxx ... Transformation matrix |
| 1738 | | // [9] - xxxx ... Transformation matrix |
| 1739 | | // [10] - xxxx ... Transformation matrix |
| 1740 | | // [11] - xxxx ... Transformation matrix |
| 1741 | | // [12] - xxxx ... Transformation matrix |
| 1742 | | // [13] - xxxx ... Transformation matrix |
| 1743 | | // [14] - xxxx ... Transformation matrix |
| 1744 | | // [15] - xxxx ... Transformation matrix |
| 1745 | | ////////////*/ |
| 1746 | | |
| 1747 | | UINT32 size[4]; |
| 1748 | | UINT32 address[4]; |
| 1749 | | UINT32 megaOffset; |
| 1750 | | float eyeCoords[4]; // ObjectCoords transformed by the modelViewMatrix |
| 1751 | | // float clipCoords[4]; // EyeCoords transformed by the projectionMatrix |
| 1752 | | float ndCoords[4]; // Normalized device coordinates/clipCoordinates (x/w, y/w, z/w) |
| 1753 | | float windowCoords[4]; // Mapped ndCoordinates to screen space |
| 1754 | | float cullRay[4]; |
| 1755 | | |
| 1756 | | float objectMatrix[16]; |
| 1757 | | setIdentity(objectMatrix); |
| 1758 | | |
| 1759 | | struct polygon lastPoly = { 0 }; |
| 1760 | | const rectangle &visarea = m_screen->visible_area(); |
| 1761 | | |
| 1762 | | ///////////////// |
| 1763 | | // HEADER INFO // |
| 1764 | | ///////////////// |
| 1765 | | // THE OBJECT TRANSFORMATION MATRIX |
| 1766 | | objectMatrix[8] = uToF(packet[7]); |
| 1767 | | objectMatrix[4] = uToF(packet[8]); |
| 1768 | | objectMatrix[0] = uToF(packet[9]); |
| 1769 | | objectMatrix[3] = 0.0f; |
| 1770 | | |
| 1771 | | objectMatrix[9] = uToF(packet[10]); |
| 1772 | | objectMatrix[5] = uToF(packet[11]); |
| 1773 | | objectMatrix[1] = uToF(packet[12]); |
| 1774 | | objectMatrix[7] = 0.0f; |
| 1775 | | |
| 1776 | | objectMatrix[10] = uToF(packet[13]); |
| 1777 | | objectMatrix[6 ] = uToF(packet[14]); |
| 1778 | | objectMatrix[2 ] = uToF(packet[15]); |
| 1779 | | objectMatrix[11] = 0.0f; |
| 1780 | | |
| 1781 | | objectMatrix[12] = uToF(packet[4]); |
| 1782 | | objectMatrix[13] = uToF(packet[5]); |
| 1783 | | objectMatrix[14] = uToF(packet[6]); |
| 1784 | | objectMatrix[15] = 1.0f; |
| 1785 | | |
| 1786 | | |
| 1787 | | ////////////////////////////////////////////////////////// |
| 1788 | | // EXTRACT DATA FROM THE ADDRESS POINTED TO IN THE FILE // |
| 1789 | | ////////////////////////////////////////////////////////// |
| 1790 | | /*////////////////////////////////////////////// |
| 1791 | | // DIRECTLY-POINTED-TO FORMAT (7 words x 3 ROMs) |
| 1792 | | // [0] - lower word of sub-address 1 |
| 1793 | | // [1] - lower word of sub-address 2 |
| 1794 | | // [2] - upper word of all sub-addresses |
| 1795 | | // [3] - lower word of sub-address 3 |
| 1796 | | // [4] - lower word of sub-address 4 |
| 1797 | | // [5] - ???? always 0 ???? |
| 1798 | | // [6] - number of chunks in sub-address 1 block |
| 1799 | | // [7] - number of chunks in sub-address 2 block |
| 1800 | | // [8] - ???? always 0 ???? |
| 1801 | | // [9] - number of chunks in sub-address 3 block |
| 1802 | | // [10] - number of chunks in sub-address 4 block |
| 1803 | | // [11] - ? definitely used. |
| 1804 | | // [12] - ? definitely used. |
| 1805 | | // [13] - ? definitely used. |
| 1806 | | // [14] - ? definitely used. |
| 1807 | | // [15] - ???? always 0 ???? |
| 1808 | | // [16] - ???? always 0 ???? |
| 1809 | | // [17] - ???? always 0 ???? |
| 1810 | | // [18] - ???? always 0 ???? |
| 1811 | | // [19] - ???? always 0 ???? |
| 1812 | | // [20] - ???? always 0 ???? |
| 1813 | | //////////////////////////////////////////////*/ |
| 1814 | | |
| 1815 | | // 3d ROM Offset |
| 1816 | | UINT16* threeDRoms = (UINT16*)memregion("verts")->base(); |
| 1817 | | UINT32 threeDOffset = (((UINT32)packet[2]) << 16) | ((UINT32)packet[3]); |
| 1818 | | UINT16* threeDPointer = &threeDRoms[threeDOffset * 3]; |
| 1819 | | |
| 1820 | | if (threeDOffset >= memregion("verts")->bytes()) |
| 1821 | | { |
| 1822 | | printf("Strange geometry packet: (ignoring)\n"); |
| 1823 | | printPacket(packet, 1); |
| 1824 | | return; |
| 1825 | | } |
| 1826 | | |
| 1827 | | #if 0 |
| 1828 | | // Debug - ajg |
| 1829 | | printf("%08x : ", threeDOffset*3*2); |
| 1830 | | for (int k = 0; k < 7*3; k++) |
| 1831 | | { |
| 1832 | | printf("%04x ", threeDPointer[k]); |
| 1833 | | if ((k % 3) == 2) printf(" "); |
| 1834 | | } |
| 1835 | | printf("\n"); |
| 1836 | | #endif |
| 1837 | | |
| 1838 | | // There are 4 hunks per address. |
| 1839 | | address[0] = threeDPointer[0]; |
| 1840 | | address[1] = threeDPointer[1]; |
| 1841 | | megaOffset = threeDPointer[2]; |
| 1842 | | |
| 1843 | | address[2] = threeDPointer[3]; |
| 1844 | | address[3] = threeDPointer[4]; |
| 1845 | | if (threeDPointer[5] != 0x0000) printf("ZOMG! 3dPointer[5] is non-zero!\n"); |
| 1846 | | |
| 1847 | | size[0] = threeDPointer[6]; |
| 1848 | | size[1] = threeDPointer[7]; |
| 1849 | | if (threeDPointer[8] != 0x0000) printf("ZOMG! 3dPointer[8] is non-zero!\n"); |
| 1850 | | |
| 1851 | | size[2] = threeDPointer[9]; |
| 1852 | | size[3] = threeDPointer[10]; |
| 1853 | | /* ???? [11]; Used. */ |
| 1854 | | |
| 1855 | | /* ???? [12]; Used. */ |
| 1856 | | /* ???? [13]; Used. */ |
| 1857 | | /* ???? [14]; Used. */ |
| 1858 | | |
| 1859 | | if (threeDPointer[15] != 0x0000) printf("ZOMG! 3dPointer[15] is non-zero!\n"); |
| 1860 | | if (threeDPointer[16] != 0x0000) printf("ZOMG! 3dPointer[16] is non-zero!\n"); |
| 1861 | | if (threeDPointer[17] != 0x0000) printf("ZOMG! 3dPointer[17] is non-zero!\n"); |
| 1862 | | |
| 1863 | | if (threeDPointer[18] != 0x0000) printf("ZOMG! 3dPointer[18] is non-zero!\n"); |
| 1864 | | if (threeDPointer[19] != 0x0000) printf("ZOMG! 3dPointer[19] is non-zero!\n"); |
| 1865 | | if (threeDPointer[20] != 0x0000) printf("ZOMG! 3dPointer[20] is non-zero!\n"); |
| 1866 | | |
| 1867 | | /* Concatenate the megaOffset with the addresses */ |
| 1868 | | address[0] |= (megaOffset << 16); |
| 1869 | | address[1] |= (megaOffset << 16); |
| 1870 | | address[2] |= (megaOffset << 16); |
| 1871 | | address[3] |= (megaOffset << 16); |
| 1872 | | |
| 1873 | | // Debug - ajg |
| 1874 | | //UINT32 tdColor = 0xff000000; |
| 1875 | | //if (threeDPointer[14] & 0x0002) tdColor |= 0x00ff0000; |
| 1876 | | //if (threeDPointer[14] & 0x0001) tdColor |= 0x0000ff00; |
| 1877 | | //if (threeDPointer[14] & 0x0000) tdColor |= 0x000000ff; |
| 1878 | | |
| 1879 | | /* For all 4 polygon chunks */ |
| 1880 | | for (int k = 0; k < 4; k++) |
| 1881 | | { |
| 1882 | | UINT16* chunkOffset = &threeDRoms[address[k] * 3]; |
| 1883 | | for (int l = 0; l < size[k]; l++) |
| 1884 | | { |
| 1885 | | //////////////////////////////////////////// |
| 1886 | | // GATHER A SINGLE TRIANGLE'S INFORMATION // |
| 1887 | | //////////////////////////////////////////// |
| 1888 | | // SINGLE POLY CHUNK FORMAT |
| 1889 | | // [0] ??-- - ??? |
| 1890 | | // [0] --xx - Chunk type |
| 1891 | | // |
| 1892 | | // [1] ?--- - Flags [?000 = ??? |
| 1893 | | // 0?00 = ??? |
| 1894 | | // 00?0 = ??? |
| 1895 | | // 000x = low-res texture flag] |
| 1896 | | // [1] -x-- - Explicit 0x80 palette index. |
| 1897 | | // [1] --x- - Explicit 0x08 palette index. |
| 1898 | | // [1] ---x - Texture page (1024x1024 bytes) |
| 1899 | | // |
| 1900 | | // [2] x--- - Texture Flags [x000 = Uses 4x4 sub-texture pages? |
| 1901 | | // 0?00 = ??? - differen sub-page size? SNK logo in RoadEdge. Always on in bbust2. |
| 1902 | | // 00xx = Horizontal sub-texture page index] |
| 1903 | | // [2] -?-- - ??? - barely visible (thus far) in roadedge |
| 1904 | | // [2] --x- - Texture Flags [?000 = ??? |
| 1905 | | // 0xx0 = Vertical sub-texture page index. |
| 1906 | | // 000? = ???] |
| 1907 | | // [2] ---? - ??? |
| 1908 | | ////////////////////////// |
| 1909 | | UINT8 chunkType = chunkOffset[0] & 0x00ff; |
| 1910 | | |
| 1911 | | // Debug - ajg |
| 1912 | | if (chunkOffset[0] & 0xff00) |
| 1913 | | { |
| 1914 | | printf("Weird! The top byte of the chunkType has a value %04x!\n", chunkOffset[0]); |
| 1915 | | continue; |
| 1916 | | } |
| 1917 | | |
| 1918 | | // Debug - Colors polygons with certain flags bright blue! ajg |
| 1919 | | polys[*numPolys].debugColor = 0; |
| 1920 | | //polys[*numPolys].debugColor = tdColor; |
| 1921 | | |
| 1922 | | // Debug - ajg |
| 1923 | | //printf("%d (%08x) : %04x %04x %04x\n", k, address[k]*3*2, chunkOffset[0], chunkOffset[1], chunkOffset[2]); |
| 1924 | | //break; |
| 1925 | | |
| 1926 | | // TEXTURE |
| 1927 | | /* There may be more than just high & low res texture types, so I'm keeping texType as a UINT8. */ |
| 1928 | | if (chunkOffset[1] & 0x1000) polys[*numPolys].texType = 0x1; |
| 1929 | | else polys[*numPolys].texType = 0x0; |
| 1930 | | |
| 1931 | | polys[*numPolys].texPageSmall = (chunkOffset[2] & 0x8000) >> 15; // Just a guess. |
| 1932 | | polys[*numPolys].texPageHorizOffset = (chunkOffset[2] & 0x3000) >> 12; |
| 1933 | | polys[*numPolys].texPageVertOffset = (chunkOffset[2] & 0x0060) >> 5; |
| 1934 | | |
| 1935 | | polys[*numPolys].texIndex = chunkOffset[1] & 0x000f; |
| 1936 | | |
| 1937 | | |
| 1938 | | // PALETTE |
| 1939 | | polys[*numPolys].palOffset = 0; |
| 1940 | | polys[*numPolys].palPageSize = 0x100; |
| 1941 | | |
| 1942 | | /* FIXME: This isn't correct. |
| 1943 | | Buriki & Xrally need this line. Roads Edge needs it removed. |
| 1944 | | So instead we're looking for a bit that is on for XRally & Buriki, but noone else. */ |
| 1945 | | if (m_3dregs[0x00/4] & 0x2000) |
| 1946 | | { |
| 1947 | | if (strcmp(machine().basename(), "roadedge")) |
| 1948 | | polys[*numPolys].palOffset += 0x800; |
| 1949 | | } |
| 1950 | | |
| 1951 | | //UINT16 explicitPaletteValue0 = ((chunkOffset[?] & 0x????) >> ?) * 0x800; |
| 1952 | | UINT16 explicitPaletteValue1 = ((chunkOffset[1] & 0x0f00) >> 8) * 0x080; |
| 1953 | | UINT16 explicitPaletteValue2 = ((chunkOffset[1] & 0x00f0) >> 4) * 0x008; |
| 1954 | | |
| 1955 | | // The presence of 0x00f0 *probably* sets 0x10-sized palette addressing. |
| 1956 | | if (explicitPaletteValue2) polys[*numPolys].palPageSize = 0x10; |
| 1957 | | |
| 1958 | | // Apply the dynamic palette offset if its flag is set, otherwise stick with the fixed one |
| 1959 | | if ((packet[1] & 0x0100)) |
| 1960 | | { |
| 1961 | | explicitPaletteValue1 = m_paletteState3d * 0x80; |
| 1962 | | explicitPaletteValue2 = 0; // This is probably hiding somewhere in operation 0011 |
| 1963 | | } |
| 1964 | | |
| 1965 | | polys[*numPolys].palOffset += (explicitPaletteValue1 + explicitPaletteValue2); |
| 1966 | | |
| 1967 | | |
| 1968 | | |
| 1969 | | UINT8 chunkLength = 0; |
| 1970 | | switch(chunkType) |
| 1971 | | { |
| 1972 | | /*///////////////////////// |
| 1973 | | // CHUNK TYPE BITS - These are very likely incorrect. |
| 1974 | | // x--- ---- - 1 = Has only 1 vertex (part of a triangle fan/strip) |
| 1975 | | // -x-- ---- - |
| 1976 | | // --x- ---- - |
| 1977 | | // ---x ---- - |
| 1978 | | // ---- x--- - |
| 1979 | | // ---- -x-- - 1 = Has per-vert UVs |
| 1980 | | // ---- --x- - |
| 1981 | | // ---- ---x - 1 = Has per-vert normals |
| 1982 | | /////////////////////////*/ |
| 1983 | | |
| 1984 | | // 33 word chunk, 3 vertices, per-vertex UVs & normals, per-face normal |
| 1985 | | case 0x05: // 0000 0101 |
| 1986 | | case 0x0f: // 0000 1111 |
| 1987 | | for (int m = 0; m < 3; m++) |
| 1988 | | { |
| 1989 | | polys[*numPolys].vert[m].worldCoords[0] = uToF(chunkOffset[3 + (9*m)]); |
| 1990 | | polys[*numPolys].vert[m].worldCoords[1] = uToF(chunkOffset[4 + (9*m)]); |
| 1991 | | polys[*numPolys].vert[m].worldCoords[2] = uToF(chunkOffset[5 + (9*m)]); |
| 1992 | | polys[*numPolys].vert[m].worldCoords[3] = 1.0f; |
| 1993 | | polys[*numPolys].n = 3; |
| 1994 | | |
| 1995 | | // chunkOffset[6 + (9*m)] is almost always 0080, but it's 0070 for the translucent globe in fatfurwa player select |
| 1996 | | polys[*numPolys].vert[m].texCoords[0] = uToF(chunkOffset[7 + (9*m)]); |
| 1997 | | polys[*numPolys].vert[m].texCoords[1] = uToF(chunkOffset[8 + (9*m)]); |
| 1998 | | polys[*numPolys].vert[m].texCoords[2] = 0.0f; |
| 1999 | | polys[*numPolys].vert[m].texCoords[3] = 1.0f; |
| 2000 | | |
| 2001 | | polys[*numPolys].vert[m].normal[0] = uToF(chunkOffset[9 + (9*m)]); |
| 2002 | | polys[*numPolys].vert[m].normal[1] = uToF(chunkOffset[10 + (9*m)] ); |
| 2003 | | polys[*numPolys].vert[m].normal[2] = uToF(chunkOffset[11 + (9*m)] ); |
| 2004 | | polys[*numPolys].vert[m].normal[3] = 0.0f; |
| 2005 | | } |
| 2006 | | |
| 2007 | | // Redundantly called, but it works... |
| 2008 | | polys[*numPolys].faceNormal[0] = uToF(chunkOffset[30]); |
| 2009 | | polys[*numPolys].faceNormal[1] = uToF(chunkOffset[31]); |
| 2010 | | polys[*numPolys].faceNormal[2] = uToF(chunkOffset[32]); |
| 2011 | | polys[*numPolys].faceNormal[3] = 0.0f; |
| 2012 | | |
| 2013 | | chunkLength = 33; |
| 2014 | | break; |
| 2015 | | |
| 2016 | | |
| 2017 | | // 24 word chunk, 3 vertices, per-vertex UVs |
| 2018 | | case 0x04: // 0000 0100 |
| 2019 | | case 0x0e: // 0000 1110 |
| 2020 | | case 0x24: // 0010 0100 |
| 2021 | | case 0x2e: // 0010 1110 |
| 2022 | | for (int m = 0; m < 3; m++) |
| 2023 | | { |
| 2024 | | polys[*numPolys].vert[m].worldCoords[0] = uToF(chunkOffset[3 + (6*m)]); |
| 2025 | | polys[*numPolys].vert[m].worldCoords[1] = uToF(chunkOffset[4 + (6*m)]); |
| 2026 | | polys[*numPolys].vert[m].worldCoords[2] = uToF(chunkOffset[5 + (6*m)]); |
| 2027 | | polys[*numPolys].vert[m].worldCoords[3] = 1.0f; |
| 2028 | | polys[*numPolys].n = 3; |
| 2029 | | |
| 2030 | | // chunkOffset[6 + (6*m)] is almost always 0080, but it's 0070 for the translucent globe in fatfurwa player select |
| 2031 | | polys[*numPolys].vert[m].texCoords[0] = uToF(chunkOffset[7 + (6*m)]); |
| 2032 | | polys[*numPolys].vert[m].texCoords[1] = uToF(chunkOffset[8 + (6*m)]); |
| 2033 | | polys[*numPolys].vert[m].texCoords[2] = 0.0f; |
| 2034 | | polys[*numPolys].vert[m].texCoords[3] = 1.0f; |
| 2035 | | |
| 2036 | | polys[*numPolys].vert[m].normal[0] = uToF(chunkOffset[21]); |
| 2037 | | polys[*numPolys].vert[m].normal[1] = uToF(chunkOffset[22]); |
| 2038 | | polys[*numPolys].vert[m].normal[2] = uToF(chunkOffset[23]); |
| 2039 | | polys[*numPolys].vert[m].normal[3] = 0.0f; |
| 2040 | | } |
| 2041 | | |
| 2042 | | // Redundantly called, but it works... |
| 2043 | | polys[*numPolys].faceNormal[0] = polys[*numPolys].vert[2].normal[0]; |
| 2044 | | polys[*numPolys].faceNormal[1] = polys[*numPolys].vert[2].normal[1]; |
| 2045 | | polys[*numPolys].faceNormal[2] = polys[*numPolys].vert[2].normal[2]; |
| 2046 | | polys[*numPolys].faceNormal[3] = 0.0f; |
| 2047 | | |
| 2048 | | chunkLength = 24; |
| 2049 | | break; |
| 2050 | | |
| 2051 | | |
| 2052 | | // 15 word chunk, 1 vertex, per-vertex UVs & normals, face normal |
| 2053 | | case 0x87: // 1000 0111 |
| 2054 | | case 0x97: // 1001 0111 |
| 2055 | | case 0xd7: // 1101 0111 |
| 2056 | | case 0xc7: // 1100 0111 |
| 2057 | | // Copy over the proper vertices from the previous triangle... |
| 2058 | | memcpy(&polys[*numPolys].vert[1], &lastPoly.vert[0], sizeof(struct polyVert)); |
| 2059 | | memcpy(&polys[*numPolys].vert[2], &lastPoly.vert[2], sizeof(struct polyVert)); |
| 2060 | | |
| 2061 | | // Fill in the appropriate data... |
| 2062 | | polys[*numPolys].vert[0].worldCoords[0] = uToF(chunkOffset[3]); |
| 2063 | | polys[*numPolys].vert[0].worldCoords[1] = uToF(chunkOffset[4]); |
| 2064 | | polys[*numPolys].vert[0].worldCoords[2] = uToF(chunkOffset[5]); |
| 2065 | | polys[*numPolys].vert[0].worldCoords[3] = 1.0f; |
| 2066 | | polys[*numPolys].n = 3; |
| 2067 | | |
| 2068 | | // chunkOffset[6] is almost always 0080, but it's 0070 for the translucent globe in fatfurwa player select |
| 2069 | | polys[*numPolys].vert[0].texCoords[0] = uToF(chunkOffset[7]); |
| 2070 | | polys[*numPolys].vert[0].texCoords[1] = uToF(chunkOffset[8]); |
| 2071 | | polys[*numPolys].vert[0].texCoords[2] = 0.0f; |
| 2072 | | polys[*numPolys].vert[0].texCoords[3] = 1.0f; |
| 2073 | | |
| 2074 | | polys[*numPolys].vert[0].normal[0] = uToF(chunkOffset[9]); |
| 2075 | | polys[*numPolys].vert[0].normal[1] = uToF(chunkOffset[10]); |
| 2076 | | polys[*numPolys].vert[0].normal[2] = uToF(chunkOffset[11]); |
| 2077 | | polys[*numPolys].vert[0].normal[3] = 0.0f; |
| 2078 | | |
| 2079 | | polys[*numPolys].faceNormal[0] = uToF(chunkOffset[12]); |
| 2080 | | polys[*numPolys].faceNormal[1] = uToF(chunkOffset[13]); |
| 2081 | | polys[*numPolys].faceNormal[2] = uToF(chunkOffset[14]); |
| 2082 | | polys[*numPolys].faceNormal[3] = 0.0f; |
| 2083 | | |
| 2084 | | chunkLength = 15; |
| 2085 | | break; |
| 2086 | | |
| 2087 | | |
| 2088 | | // 12 word chunk, 1 vertex, per-vertex UVs |
| 2089 | | case 0x86: // 1000 0110 |
| 2090 | | case 0x96: // 1001 0110 |
| 2091 | | case 0xb6: // 1011 0110 |
| 2092 | | case 0xc6: // 1100 0110 |
| 2093 | | case 0xd6: // 1101 0110 |
| 2094 | | // Copy over the proper vertices from the previous triangle... |
| 2095 | | memcpy(&polys[*numPolys].vert[1], &lastPoly.vert[0], sizeof(struct polyVert)); |
| 2096 | | memcpy(&polys[*numPolys].vert[2], &lastPoly.vert[2], sizeof(struct polyVert)); |
| 2097 | | |
| 2098 | | polys[*numPolys].vert[0].worldCoords[0] = uToF(chunkOffset[3]); |
| 2099 | | polys[*numPolys].vert[0].worldCoords[1] = uToF(chunkOffset[4]); |
| 2100 | | polys[*numPolys].vert[0].worldCoords[2] = uToF(chunkOffset[5]); |
| 2101 | | polys[*numPolys].vert[0].worldCoords[3] = 1.0f; |
| 2102 | | polys[*numPolys].n = 3; |
| 2103 | | |
| 2104 | | // chunkOffset[6] is almost always 0080, but it's 0070 for the translucent globe in fatfurwa player select |
| 2105 | | polys[*numPolys].vert[0].texCoords[0] = uToF(chunkOffset[7]); |
| 2106 | | polys[*numPolys].vert[0].texCoords[1] = uToF(chunkOffset[8]); |
| 2107 | | polys[*numPolys].vert[0].texCoords[2] = 0.0f; |
| 2108 | | polys[*numPolys].vert[0].texCoords[3] = 1.0f; |
| 2109 | | |
| 2110 | | // This normal could be right, but I'm not entirely sure - there is no normal in the 18 bytes! |
| 2111 | | polys[*numPolys].vert[0].normal[0] = lastPoly.faceNormal[0]; |
| 2112 | | polys[*numPolys].vert[0].normal[1] = lastPoly.faceNormal[1]; |
| 2113 | | polys[*numPolys].vert[0].normal[2] = lastPoly.faceNormal[2]; |
| 2114 | | polys[*numPolys].vert[0].normal[3] = lastPoly.faceNormal[3]; |
| 2115 | | |
| 2116 | | polys[*numPolys].faceNormal[0] = lastPoly.faceNormal[0]; |
| 2117 | | polys[*numPolys].faceNormal[1] = lastPoly.faceNormal[1]; |
| 2118 | | polys[*numPolys].faceNormal[2] = lastPoly.faceNormal[2]; |
| 2119 | | polys[*numPolys].faceNormal[3] = lastPoly.faceNormal[3]; |
| 2120 | | |
| 2121 | | // TODO: I'm not reading 3 necessary words here (maybe face normal) !!! |
| 2122 | | |
| 2123 | | #if 0 |
| 2124 | | // DEBUG |
| 2125 | | printf("0x?6 : %08x (%d/%d)\n", address[k]*3*2, l, size[k]-1); |
| 2126 | | for (int m = 0; m < 13; m++) |
| 2127 | | printf("%04x ", chunkOffset[m]); |
| 2128 | | printf("\n"); |
| 2129 | | |
| 2130 | | for (int m = 0; m < 13; m++) |
| 2131 | | printf("%3.4f ", uToF(chunkOffset[m])); |
| 2132 | | printf("\n\n"); |
| 2133 | | #endif |
| 2134 | | |
| 2135 | | chunkLength = 12; |
| 2136 | | break; |
| 2137 | | |
| 2138 | | default: |
| 2139 | | printf("UNKNOWN geometry CHUNK TYPE : %02x\n", chunkType); |
| 2140 | | chunkLength = 0; |
| 2141 | | break; |
| 2142 | | } |
| 2143 | | |
| 2144 | | polys[*numPolys].visible = 1; |
| 2145 | | |
| 2146 | | // Backup the last polygon (for triangle fans [strips?]) |
| 2147 | | memcpy(&lastPoly, &polys[*numPolys], sizeof(struct polygon)); |
| 2148 | | |
| 2149 | | |
| 2150 | | //////////////////////////////////// |
| 2151 | | // Project and clip // |
| 2152 | | //////////////////////////////////// |
| 2153 | | // Perform the world transformations... |
| 2154 | | // !! Can eliminate this step with a matrix stack (maybe necessary?) !! |
| 2155 | | setIdentity(m_modelViewMatrix); |
| 2156 | | if (m_mcu_type != SAMSHO_MCU) |
| 2157 | | { |
| 2158 | | // The sams64 games transform the geometry in front of a stationary camera. |
| 2159 | | // This is fine in sams64_2, since it never calls the 'camera transformation' function |
| 2160 | | // (thus using the identity matrix for this transform), but sams64 calls the |
| 2161 | | // camera transformation function with rotation values. |
| 2162 | | // It remains to be seen what those might do... |
| 2163 | | matmul4(m_modelViewMatrix, m_modelViewMatrix, m_cameraMatrix); |
| 2164 | | } |
| 2165 | | matmul4(m_modelViewMatrix, m_modelViewMatrix, objectMatrix); |
| 2166 | | |
| 2167 | | // LIGHTING |
| 2168 | | if (packet[1] & 0x0008 && m_lightStrength > 0.0f) |
| 2169 | | { |
| 2170 | | for (int v = 0; v < 3; v++) |
| 2171 | | { |
| 2172 | | float transformedNormal[4]; |
| 2173 | | vecmatmul4(transformedNormal, objectMatrix, polys[*numPolys].vert[v].normal); |
| 2174 | | normalize(transformedNormal); |
| 2175 | | normalize(m_lightVector); |
| 2176 | | |
| 2177 | | float intensity = vecDotProduct(transformedNormal, m_lightVector) * -1.0f; |
| 2178 | | intensity = (intensity <= 0.0f) ? (0.0f) : (intensity); |
| 2179 | | intensity *= m_lightStrength * 128.0f; // Turns 0x0100 into 1.0 |
| 2180 | | intensity *= 128.0; // Maps intensity to the range [0.0, 2.0] |
| 2181 | | if (intensity >= 255.0f) intensity = 255.0f; |
| 2182 | | |
| 2183 | | polys[*numPolys].vert[v].light[0] = intensity; |
| 2184 | | polys[*numPolys].vert[v].light[1] = intensity; |
| 2185 | | polys[*numPolys].vert[v].light[2] = intensity; |
| 2186 | | } |
| 2187 | | } |
| 2188 | | else |
| 2189 | | { |
| 2190 | | // Just clear out the light values |
| 2191 | | for (int v = 0; v < 3; v++) |
| 2192 | | { |
| 2193 | | polys[*numPolys].vert[v].light[0] = 0; |
| 2194 | | polys[*numPolys].vert[v].light[1] = 0; |
| 2195 | | polys[*numPolys].vert[v].light[2] = 0; |
| 2196 | | } |
| 2197 | | } |
| 2198 | | |
| 2199 | | |
| 2200 | | // BACKFACE CULL // |
| 2201 | | // EMPIRICAL EVIDENCE SEEMS TO SHOW THE HNG64 HARDWARE DOES NOT BACKFACE CULL // |
| 2202 | | #if 0 |
| 2203 | | float cullRay[4]; |
| 2204 | | float cullNorm[4]; |
| 2205 | | |
| 2206 | | // Cast a ray out of the camera towards the polygon's point in eyespace. |
| 2207 | | vecmatmul4(cullRay, modelViewMatrix, polys[*numPolys].vert[0].worldCoords); |
| 2208 | | normalize(cullRay); |
| 2209 | | // Dot product that with the normal to see if you're negative... |
| 2210 | | vecmatmul4(cullNorm, modelViewMatrix, polys[*numPolys].faceNormal); |
| 2211 | | |
| 2212 | | float result = vecDotProduct(cullRay, cullNorm); |
| 2213 | | |
| 2214 | | if (result < 0.0f) |
| 2215 | | polys[*numPolys].visible = 1; |
| 2216 | | else |
| 2217 | | polys[*numPolys].visible = 0; |
| 2218 | | #endif |
| 2219 | | |
| 2220 | | |
| 2221 | | // BEHIND-THE-CAMERA CULL // |
| 2222 | | vecmatmul4(cullRay, m_modelViewMatrix, polys[*numPolys].vert[0].worldCoords); |
| 2223 | | if (cullRay[2] > 0.0f) // Camera is pointing down -Z |
| 2224 | | { |
| 2225 | | polys[*numPolys].visible = 0; |
| 2226 | | } |
| 2227 | | |
| 2228 | | |
| 2229 | | // TRANSFORM THE TRIANGLE INTO HOMOGENEOUS SCREEN SPACE // |
| 2230 | | if (polys[*numPolys].visible) |
| 2231 | | { |
| 2232 | | for (int m = 0; m < polys[*numPolys].n; m++) |
| 2233 | | { |
| 2234 | | // Transform and project the vertex into pre-divided homogeneous coordinates... |
| 2235 | | vecmatmul4(eyeCoords, m_modelViewMatrix, polys[*numPolys].vert[m].worldCoords); |
| 2236 | | vecmatmul4(polys[*numPolys].vert[m].clipCoords, m_projectionMatrix, eyeCoords); |
| 2237 | | } |
| 2238 | | |
| 2239 | | if (polys[*numPolys].visible) |
| 2240 | | { |
| 2241 | | // Clip the triangles to the view frustum... |
| 2242 | | performFrustumClip(&polys[*numPolys]); |
| 2243 | | |
| 2244 | | for (int m = 0; m < polys[*numPolys].n; m++) |
| 2245 | | { |
| 2246 | | // Convert into normalized device coordinates... |
| 2247 | | ndCoords[0] = polys[*numPolys].vert[m].clipCoords[0] / polys[*numPolys].vert[m].clipCoords[3]; |
| 2248 | | ndCoords[1] = polys[*numPolys].vert[m].clipCoords[1] / polys[*numPolys].vert[m].clipCoords[3]; |
| 2249 | | ndCoords[2] = polys[*numPolys].vert[m].clipCoords[2] / polys[*numPolys].vert[m].clipCoords[3]; |
| 2250 | | ndCoords[3] = polys[*numPolys].vert[m].clipCoords[3]; |
| 2251 | | |
| 2252 | | // Final pixel values are garnered here : |
| 2253 | | windowCoords[0] = (ndCoords[0]+1.0f) * ((float)(visarea.max_x) / 2.0f) + 0.0f; |
| 2254 | | windowCoords[1] = (ndCoords[1]+1.0f) * ((float)(visarea.max_y) / 2.0f) + 0.0f; |
| 2255 | | windowCoords[2] = (ndCoords[2]+1.0f) * 0.5f; |
| 2256 | | |
| 2257 | | windowCoords[1] = (float)visarea.max_y - windowCoords[1]; // Flip Y |
| 2258 | | |
| 2259 | | // Store the points in a list for later use... |
| 2260 | | polys[*numPolys].vert[m].clipCoords[0] = windowCoords[0]; |
| 2261 | | polys[*numPolys].vert[m].clipCoords[1] = windowCoords[1]; |
| 2262 | | polys[*numPolys].vert[m].clipCoords[2] = windowCoords[2]; |
| 2263 | | polys[*numPolys].vert[m].clipCoords[3] = ndCoords[3]; |
| 2264 | | } |
| 2265 | | } |
| 2266 | | } |
| 2267 | | |
| 2268 | | // Advance to the next polygon chunk... |
| 2269 | | chunkOffset += chunkLength; |
| 2270 | | |
| 2271 | | (*numPolys)++; |
| 2272 | | } |
| 2273 | | } |
| 2274 | | } |
| 2275 | | |
| 2276 | | void hng64_state::hng64_command3d(const UINT16* packet) |
| 2277 | | { |
| 2278 | | |
| 2279 | | /* A temporary place to put some polygons. This will optimize away if the compiler's any good. */ |
| 2280 | | int numPolys = 0; |
| 2281 | | dynamic_array<polygon> polys(1024*5); |
| 2282 | | |
| 2283 | | //printf("packet type : %04x %04x|%04x %04x|%04x %04x|%04x %04x | %04x %04x %04x %04x %04x %04x %04x %04x\n", packet[0],packet[1],packet[2],packet[3],packet[4],packet[5],packet[6],packet[7], packet[8], packet[9], packet[10], packet[11], packet[12], packet[13], packet[14], packet[15]); |
| 2284 | | |
| 2285 | | switch (packet[0]) |
| 2286 | | { |
| 2287 | | case 0x0000: // Appears to be a NOP. |
| 2288 | | break; |
| 2289 | | |
| 2290 | | case 0x0001: // Camera transformation. |
| 2291 | | setCameraTransformation(packet); |
| 2292 | | break; |
| 2293 | | |
| 2294 | | case 0x0010: // Lighting information. |
| 2295 | | //if (packet[9]) printPacket(packet, 1); |
| 2296 | | setLighting(packet); |
| 2297 | | break; |
| 2298 | | |
| 2299 | | case 0x0011: // Palette / Model flags? |
| 2300 | | //printPacket(packet, 1); printf("\n"); |
| 2301 | | set3dFlags(packet); |
| 2302 | | break; |
| 2303 | | |
| 2304 | | case 0x0012: // Projection Matrix |
| 2305 | | //printPacket(packet, 1); |
| 2306 | | setCameraProjectionMatrix(packet); |
| 2307 | | break; |
| 2308 | | |
| 2309 | | case 0x0100: |
| 2310 | | case 0x0101: // Geometry with full transformations |
| 2311 | | // HACK. Masks out a piece of geo bbust2's drawShaded() crashes on. |
| 2312 | | if (packet[2] == 0x0003 && packet[3] == 0x8f37 && m_mcu_type == SHOOT_MCU) |
| 2313 | | break; |
| 2314 | | |
| 2315 | | recoverPolygonBlock( packet, polys, &numPolys); |
| 2316 | | break; |
| 2317 | | |
| 2318 | | case 0x0102: // Geometry with only translation |
| 2319 | | // HACK. Give up on strange calls to 0102. |
| 2320 | | if (packet[8] != 0x0102) |
| 2321 | | { |
| 2322 | | // It appears as though packet[7] might hold the magic # |
| 2323 | | // Almost looks like there is a chain mode for these guys. Same for 0101? |
| 2324 | | // printf("WARNING: "); printPacket(packet, 1); |
| 2325 | | break; |
| 2326 | | } |
| 2327 | | |
| 2328 | | // Split the packet and call recoverPolygonBlock on each half. |
| 2329 | | UINT16 miniPacket[16]; |
| 2330 | | memset(miniPacket, 0, sizeof(UINT16)*16); |
| 2331 | | for (int i = 0; i < 7; i++) miniPacket[i] = packet[i]; |
| 2332 | | miniPacket[7] = 0x7fff; |
| 2333 | | miniPacket[11] = 0x7fff; |
| 2334 | | miniPacket[15] = 0x7fff; |
| 2335 | | recoverPolygonBlock( miniPacket, polys, &numPolys); |
| 2336 | | |
| 2337 | | memset(miniPacket, 0, sizeof(UINT16)*16); |
| 2338 | | for (int i = 0; i < 7; i++) miniPacket[i] = packet[i+8]; |
| 2339 | | for (int i = 0; i < 7; i++) miniPacket[i] = packet[i+8]; |
| 2340 | | miniPacket[7] = 0x7fff; |
| 2341 | | miniPacket[11] = 0x7fff; |
| 2342 | | miniPacket[15] = 0x7fff; |
| 2343 | | recoverPolygonBlock( miniPacket, polys, &numPolys); |
| 2344 | | break; |
| 2345 | | |
| 2346 | | case 0x1000: // Unknown: Some sort of global flags? |
| 2347 | | //printPacket(packet, 1); printf("\n"); |
| 2348 | | break; |
| 2349 | | |
| 2350 | | case 0x1001: // Unknown: Some sort of global flags (a group of 4, actually)? |
| 2351 | | //printPacket(packet, 1); |
| 2352 | | break; |
| 2353 | | |
| 2354 | | default: |
| 2355 | | printf("HNG64: Unknown 3d command %04x.\n", packet[0]); |
| 2356 | | break; |
| 2357 | | } |
| 2358 | | |
| 2359 | | /* If there are polygons, rasterize them into the display buffer */ |
| 2360 | | for (int i = 0; i < numPolys; i++) |
| 2361 | | { |
| 2362 | | if (polys[i].visible) |
| 2363 | | { |
| 2364 | | //DrawWireframe( &polys[i]); |
| 2365 | | drawShaded( &polys[i]); |
| 2366 | | } |
| 2367 | | } |
| 2368 | | } |
| 2369 | | |
| 2370 | | void hng64_state::clear3d() |
| 2371 | | { |
| 2372 | | int i; |
| 2373 | | |
| 2374 | | const rectangle &visarea = m_screen->visible_area(); |
| 2375 | | |
| 2376 | | // Clear each of the display list buffers after drawing - todo: kill! |
| 2377 | | for (i = 0; i < 0x81; i++) |
| 2378 | | { |
| 2379 | | m_dls[0][i] = 0; |
| 2380 | | m_dls[1][i] = 0; |
| 2381 | | } |
| 2382 | | |
| 2383 | | // Reset the buffers... |
| 2384 | | for (i = 0; i < (visarea.max_x)*(visarea.max_y); i++) |
| 2385 | | { |
| 2386 | | m_depthBuffer3d[i] = 100.0f; |
| 2387 | | m_colorBuffer3d[i] = rgb_t(0, 0, 0, 0); |
| 2388 | | } |
| 2389 | | |
| 2390 | | // Set some matrices to the identity... |
| 2391 | | setIdentity(m_projectionMatrix); |
| 2392 | | setIdentity(m_modelViewMatrix); |
| 2393 | | setIdentity(m_cameraMatrix); |
| 2394 | | } |
| 2395 | | |
| 2396 | | /* 3D/framebuffer video registers |
| 2397 | | * ------------------------------ |
| 2398 | | * |
| 2399 | | * UINT32 | Bits | Use |
| 2400 | | * | 3322 2222 2222 1111 1111 11 | |
| 2401 | | * -------+-1098-7654-3210-9876-5432-1098-7654-3210-+---------------- |
| 2402 | | * 0 | ---- --x- ---- ---- ---- ---- ---- ---- | Reads in Fatal Fury WA, if on then there isn't a 3d refresh (busy flag?). |
| 2403 | | * 0 | ---- ---x ---- ---- ---- ---- ---- ---- | set at POST/service modes, almost likely fb disable |
| 2404 | | * 0 | ???? ???? ???? ???? ccc? ???? ???? ???? | framebuffer color base, 0x311800 in Fatal Fury WA, 0x313800 in Buriki One |
| 2405 | | * 1 | | |
| 2406 | | * 2 | ???? ???? ???? ???? ???? ???? ???? ???? | camera / framebuffer global x/y? Actively used by Samurai Shodown 64 2 |
| 2407 | | * 3 | ---- --?x ---- ---- ---- ---- ---- ---- | unknown, unsetted by Buriki One and setted by Fatal Fury WA, buffering mode? |
| 2408 | | * 4-11 | ---- ???? ---- ???? ---- ???? ---- ???? | Table filled with 0x0? data |
| 2409 | | * |
| 2410 | | */ |
| 2411 | | |
| 2412 | | ///////////////////// |
| 2413 | | // 3D UTILITY CODE // |
| 2414 | | ///////////////////// |
| 2415 | | |
| 2416 | | /* 4x4 matrix multiplication */ |
| 2417 | | static void matmul4(float *product, const float *a, const float *b ) |
| 2418 | | { |
| 2419 | | int i; |
| 2420 | | for (i = 0; i < 4; i++) |
| 2421 | | { |
| 2422 | | const float ai0 = a[0 + i]; |
| 2423 | | const float ai1 = a[4 + i]; |
| 2424 | | const float ai2 = a[8 + i]; |
| 2425 | | const float ai3 = a[12 + i]; |
| 2426 | | |
| 2427 | | product[0 + i] = ai0 * b[0 ] + ai1 * b[1 ] + ai2 * b[2 ] + ai3 * b[3 ]; |
| 2428 | | product[4 + i] = ai0 * b[4 ] + ai1 * b[5 ] + ai2 * b[6 ] + ai3 * b[7 ]; |
| 2429 | | product[8 + i] = ai0 * b[8 ] + ai1 * b[9 ] + ai2 * b[10] + ai3 * b[11]; |
| 2430 | | product[12 + i] = ai0 * b[12] + ai1 * b[13] + ai2 * b[14] + ai3 * b[15]; |
| 2431 | | } |
| 2432 | | } |
| 2433 | | |
| 2434 | | /* vector by 4x4 matrix multiply */ |
| 2435 | | static void vecmatmul4(float *product, const float *a, const float *b) |
| 2436 | | { |
| 2437 | | const float bi0 = b[0]; |
| 2438 | | const float bi1 = b[1]; |
| 2439 | | const float bi2 = b[2]; |
| 2440 | | const float bi3 = b[3]; |
| 2441 | | |
| 2442 | | product[0] = bi0 * a[0] + bi1 * a[4] + bi2 * a[8 ] + bi3 * a[12]; |
| 2443 | | product[1] = bi0 * a[1] + bi1 * a[5] + bi2 * a[9 ] + bi3 * a[13]; |
| 2444 | | product[2] = bi0 * a[2] + bi1 * a[6] + bi2 * a[10] + bi3 * a[14]; |
| 2445 | | product[3] = bi0 * a[3] + bi1 * a[7] + bi2 * a[11] + bi3 * a[15]; |
| 2446 | | } |
| 2447 | | |
| 2448 | | static float vecDotProduct(const float *a, const float *b) |
| 2449 | | { |
| 2450 | | return ((a[0]*b[0]) + (a[1]*b[1]) + (a[2]*b[2])); |
| 2451 | | } |
| 2452 | | |
| 2453 | | static void setIdentity(float *matrix) |
| 2454 | | { |
| 2455 | | int i; |
| 2456 | | |
| 2457 | | for (i = 0; i < 16; i++) |
| 2458 | | { |
| 2459 | | matrix[i] = 0.0f; |
| 2460 | | } |
| 2461 | | |
| 2462 | | matrix[0] = matrix[5] = matrix[10] = matrix[15] = 1.0f; |
| 2463 | | } |
| 2464 | | |
| 2465 | | static float uToF(UINT16 input) |
| 2466 | | { |
| 2467 | | float retVal; |
| 2468 | | retVal = (float)((INT16)input) / 32768.0f; |
| 2469 | | return retVal; |
| 2470 | | |
| 2471 | | #if 0 |
| 2472 | | if ((INT16)input < 0) |
| 2473 | | retVal = (float)((INT16)input) / 32768.0f; |
| 2474 | | else |
| 2475 | | retVal = (float)((INT16)input) / 32767.0f; |
| 2476 | | #endif |
| 2477 | | } |
| 2478 | | |
| 2479 | | static void normalize(float* x) |
| 2480 | | { |
| 2481 | | double l2 = (x[0]*x[0]) + (x[1]*x[1]) + (x[2]*x[2]); |
| 2482 | | double l = sqrt(l2); |
| 2483 | | |
| 2484 | | x[0] = (float)(x[0] / l); |
| 2485 | | x[1] = (float)(x[1] / l); |
| 2486 | | x[2] = (float)(x[2] / l); |
| 2487 | | } |
| 2488 | | |
| 2489 | | |
| 2490 | | |
| 2491 | | /////////////////////////// |
| 2492 | | // POLYGON CLIPPING CODE // |
| 2493 | | /////////////////////////// |
| 2494 | | |
| 2495 | | /////////////////////////////////////////////////////////////////////////////////// |
| 2496 | | // The remainder of the code in this file is heavily // |
| 2497 | | // influenced by, and sometimes copied verbatim from Andrew Zaferakis' SoftGL // |
| 2498 | | // rasterizing system. // |
| 2499 | | // // |
| 2500 | | // Andrew granted permission for its use in MAME in October of 2004. // |
| 2501 | | /////////////////////////////////////////////////////////////////////////////////// |
| 2502 | | |
| 2503 | | // Refer to the clipping planes as numbers |
| 2504 | | #define HNG64_LEFT 0 |
| 2505 | | #define HNG64_RIGHT 1 |
| 2506 | | #define HNG64_TOP 2 |
| 2507 | | #define HNG64_BOTTOM 3 |
| 2508 | | #define HNG64_NEAR 4 |
| 2509 | | #define HNG64_FAR 5 |
| 2510 | | |
| 2511 | | |
| 2512 | | static int Inside(struct polyVert *v, int plane) |
| 2513 | | { |
| 2514 | | switch(plane) |
| 2515 | | { |
| 2516 | | case HNG64_LEFT: |
| 2517 | | return (v->clipCoords[0] >= -v->clipCoords[3]) ? 1 : 0; |
| 2518 | | case HNG64_RIGHT: |
| 2519 | | return (v->clipCoords[0] <= v->clipCoords[3]) ? 1 : 0; |
| 2520 | | |
| 2521 | | case HNG64_TOP: |
| 2522 | | return (v->clipCoords[1] <= v->clipCoords[3]) ? 1 : 0; |
| 2523 | | case HNG64_BOTTOM: |
| 2524 | | return (v->clipCoords[1] >= -v->clipCoords[3]) ? 1 : 0; |
| 2525 | | |
| 2526 | | case HNG64_NEAR: |
| 2527 | | return (v->clipCoords[2] <= v->clipCoords[3]) ? 1 : 0; |
| 2528 | | case HNG64_FAR: |
| 2529 | | return (v->clipCoords[2] >= -v->clipCoords[3]) ? 1 : 0; |
| 2530 | | } |
| 2531 | | |
| 2532 | | return 0; |
| 2533 | | } |
| 2534 | | |
| 2535 | | static void Intersect(struct polyVert *input0, struct polyVert *input1, struct polyVert *output, int plane) |
| 2536 | | { |
| 2537 | | float t = 0.0f; |
| 2538 | | |
| 2539 | | float *Iv0 = input0->clipCoords; |
| 2540 | | float *Iv1 = input1->clipCoords; |
| 2541 | | float *Ov = output->clipCoords; |
| 2542 | | |
| 2543 | | float *It0 = input0->texCoords; |
| 2544 | | float *It1 = input1->texCoords; |
| 2545 | | float *Ot = output->texCoords; |
| 2546 | | |
| 2547 | | float *Il0 = input0->light; |
| 2548 | | float *Il1 = input1->light; |
| 2549 | | float *Ol = output->light; |
| 2550 | | |
| 2551 | | switch(plane) |
| 2552 | | { |
| 2553 | | case HNG64_LEFT: |
| 2554 | | t = (Iv0[0]+Iv0[3]) / (-Iv1[3]+Iv0[3]-Iv1[0]+Iv0[0]); |
| 2555 | | break; |
| 2556 | | case HNG64_RIGHT: |
| 2557 | | t = (Iv0[0]-Iv0[3]) / (Iv1[3]-Iv0[3]-Iv1[0]+Iv0[0]); |
| 2558 | | break; |
| 2559 | | case HNG64_TOP: |
| 2560 | | t = (Iv0[1]-Iv0[3]) / (Iv1[3]-Iv0[3]-Iv1[1]+Iv0[1]); |
| 2561 | | break; |
| 2562 | | case HNG64_BOTTOM: |
| 2563 | | t = (Iv0[1]+Iv0[3]) / (-Iv1[3]+Iv0[3]-Iv1[1]+Iv0[1]); |
| 2564 | | break; |
| 2565 | | case HNG64_NEAR: |
| 2566 | | t = (Iv0[2]-Iv0[3]) / (Iv1[3]-Iv0[3]-Iv1[2]+Iv0[2]); |
| 2567 | | break; |
| 2568 | | case HNG64_FAR: |
| 2569 | | t = (Iv0[2]+Iv0[3]) / (-Iv1[3]+Iv0[3]-Iv1[2]+Iv0[2]); |
| 2570 | | break; |
| 2571 | | } |
| 2572 | | |
| 2573 | | Ov[0] = Iv0[0] + (Iv1[0] - Iv0[0]) * t; |
| 2574 | | Ov[1] = Iv0[1] + (Iv1[1] - Iv0[1]) * t; |
| 2575 | | Ov[2] = Iv0[2] + (Iv1[2] - Iv0[2]) * t; |
| 2576 | | Ov[3] = Iv0[3] + (Iv1[3] - Iv0[3]) * t; |
| 2577 | | |
| 2578 | | Ot[0] = It0[0] + (It1[0] - It0[0]) * t; |
| 2579 | | Ot[1] = It0[1] + (It1[1] - It0[1]) * t; |
| 2580 | | Ot[2] = It0[2] + (It1[2] - It0[2]) * t; |
| 2581 | | Ot[3] = It0[3] + (It1[3] - It0[3]) * t; |
| 2582 | | |
| 2583 | | Ol[0] = Il0[0] + (Il1[0] - Il0[0]) * t; |
| 2584 | | Ol[1] = Il0[1] + (Il1[1] - Il0[1]) * t; |
| 2585 | | Ol[2] = Il0[2] + (Il1[2] - Il0[2]) * t; |
| 2586 | | } |
| 2587 | | |
| 2588 | | static void performFrustumClip(struct polygon *p) |
| 2589 | | { |
| 2590 | | int i, j, k; |
| 2591 | | ////////////////////////////////////////////////////////////////////////// |
| 2592 | | // Clip against the volumes defined by the homogeneous clip coordinates // |
| 2593 | | ////////////////////////////////////////////////////////////////////////// |
| 2594 | | |
| 2595 | | struct polygon temp; |
| 2596 | | |
| 2597 | | struct polyVert *v0; |
| 2598 | | struct polyVert *v1; |
| 2599 | | struct polyVert *tv; |
| 2600 | | |
| 2601 | | temp.n = 0; |
| 2602 | | |
| 2603 | | // Skip near and far clipping planes ? |
| 2604 | | for (j = 0; j <= HNG64_BOTTOM; j++) |
| 2605 | | { |
| 2606 | | for (i = 0; i < p->n; i++) |
| 2607 | | { |
| 2608 | | k = (i+1) % p->n; // Index of next vertex |
| 2609 | | |
| 2610 | | v0 = &p->vert[i]; |
| 2611 | | v1 = &p->vert[k]; |
| 2612 | | |
| 2613 | | tv = &temp.vert[temp.n]; |
| 2614 | | |
| 2615 | | if (Inside(v0, j) && Inside(v1, j)) // Edge is completely inside the volume... |
| 2616 | | { |
| 2617 | | memcpy(tv, v1, sizeof(struct polyVert)); |
| 2618 | | temp.n++; |
| 2619 | | } |
| 2620 | | |
| 2621 | | else if (Inside(v0, j) && !Inside(v1, j)) // Edge goes from in to out... |
| 2622 | | { |
| 2623 | | Intersect(v0, v1, tv, j); |
| 2624 | | temp.n++; |
| 2625 | | } |
| 2626 | | |
| 2627 | | else if (!Inside(v0, j) && Inside(v1, j)) // Edge goes from out to in... |
| 2628 | | { |
| 2629 | | Intersect(v0, v1, tv, j); |
| 2630 | | memcpy(&temp.vert[temp.n+1], v1, sizeof(struct polyVert)); |
| 2631 | | temp.n+=2; |
| 2632 | | } |
| 2633 | | } |
| 2634 | | |
| 2635 | | p->n = temp.n; |
| 2636 | | |
| 2637 | | for (i = 0; i < temp.n; i++) |
| 2638 | | { |
| 2639 | | memcpy(&p->vert[i], &temp.vert[i], sizeof(struct polyVert)); |
| 2640 | | } |
| 2641 | | |
| 2642 | | temp.n = 0; |
| 2643 | | } |
| 2644 | | } |
| 2645 | | |
| 2646 | | |
| 2647 | | ///////////////////////// |
| 2648 | | // wireframe rendering // |
| 2649 | | ///////////////////////// |
| 2650 | | #ifdef UNUSED_FUNCTION |
| 2651 | | static void plot( INT32 x, INT32 y, UINT32 color) |
| 2652 | | { |
| 2653 | | UINT32* cb = &(colorBuffer3d[(y * machine.first_screen()->visible_area().max_x) + x]); |
| 2654 | | *cb = color; |
| 2655 | | } |
| 2656 | | |
| 2657 | | // Stolen from http://en.wikipedia.org/wiki/Bresenham's_line_algorithm (no copyright denoted) - the non-optimized version |
| 2658 | | static void drawline2d( INT32 x0, INT32 y0, INT32 x1, INT32 y1, UINT32 color) |
| 2659 | | { |
| 2660 | | #define SWAP(a,b) tmpswap = a; a = b; b = tmpswap; |
| 2661 | | |
| 2662 | | INT32 i; |
| 2663 | | INT32 steep = 1; |
| 2664 | | INT32 sx, sy; /* step positive or negative (1 or -1) */ |
| 2665 | | INT32 dx, dy; /* delta (difference in X and Y between points) */ |
| 2666 | | INT32 e; |
| 2667 | | |
| 2668 | | /* |
| 2669 | | * inline swap. On some architectures, the XOR trick may be faster |
| 2670 | | */ |
| 2671 | | INT32 tmpswap; |
| 2672 | | |
| 2673 | | /* |
| 2674 | | * optimize for vertical and horizontal lines here |
| 2675 | | */ |
| 2676 | | |
| 2677 | | dx = abs(x1 - x0); |
| 2678 | | sx = ((x1 - x0) > 0) ? 1 : -1; |
| 2679 | | dy = abs(y1 - y0); |
| 2680 | | sy = ((y1 - y0) > 0) ? 1 : -1; |
| 2681 | | |
| 2682 | | if (dy > dx) |
| 2683 | | { |
| 2684 | | steep = 0; |
| 2685 | | SWAP(x0, y0); |
| 2686 | | SWAP(dx, dy); |
| 2687 | | SWAP(sx, sy); |
| 2688 | | } |
| 2689 | | |
| 2690 | | e = (dy << 1) - dx; |
| 2691 | | |
| 2692 | | for (i = 0; i < dx; i++) |
| 2693 | | { |
| 2694 | | if (steep) |
| 2695 | | { |
| 2696 | | plot( x0, y0, color); |
| 2697 | | } |
| 2698 | | else |
| 2699 | | { |
| 2700 | | plot( y0, x0, color); |
| 2701 | | } |
| 2702 | | while (e >= 0) |
| 2703 | | { |
| 2704 | | y0 += sy; |
| 2705 | | e -= (dx << 1); |
| 2706 | | } |
| 2707 | | |
| 2708 | | x0 += sx; |
| 2709 | | e += (dy << 1); |
| 2710 | | } |
| 2711 | | #undef SWAP |
| 2712 | | } |
| 2713 | | |
| 2714 | | static void DrawWireframe( struct polygon *p) |
| 2715 | | { |
| 2716 | | int j; |
| 2717 | | for (j = 0; j < p->n; j++) |
| 2718 | | { |
| 2719 | | // osd_printf_debug("now drawing : %f %f %f, %f %f %f\n", p->vert[j].clipCoords[0], p->vert[j].clipCoords[1], p->vert[j].clipCoords[2], p->vert[(j+1)%p->n].clipCoords[0], p->vert[(j+1)%p->n].clipCoords[1], p->vert[(j+1)%p->n].clipCoords[2]); |
| 2720 | | // osd_printf_debug("%f %f %f %f\n", p->vert[j].clipCoords[0], p->vert[j].clipCoords[1], p->vert[(j+1)%p->n].clipCoords[0], p->vert[(j+1)%p->n].clipCoords[1]); |
| 2721 | | UINT32 color = rgb_t((UINT8)255, (UINT8)255, (UINT8)0, (UINT8)0); |
| 2722 | | drawline2d( p->vert[j].clipCoords[0], p->vert[j].clipCoords[1], p->vert[(j+1)%p->n].clipCoords[0], p->vert[(j+1)%p->n].clipCoords[1], color); |
| 2723 | | } |
| 2724 | | |
| 2725 | | // SHOWS THE CLIPPING // |
| 2726 | | #if 0 |
| 2727 | | for (int j = 1; j < p->n-1; j++) |
| 2728 | | { |
| 2729 | | drawline2d(p->vert[0].clipCoords[0], p->vert[0].clipCoords[1], p->vert[j].clipCoords[0], p->vert[j].clipCoords[1], 255, bitmap); |
| 2730 | | drawline2d(p->vert[j].clipCoords[0], p->vert[j].clipCoords[1], p->vert[j+1].clipCoords[0], p->vert[j+1].clipCoords[1], 255, bitmap); |
| 2731 | | drawline2d(p->vert[j+1].clipCoords[0], p->vert[j+1].clipCoords[1], p->vert[0].clipCoords[0], p->vert[0].clipCoords[1], 255, bitmap); |
| 2732 | | } |
| 2733 | | #endif |
| 2734 | | } |
| 2735 | | #endif |
| 2736 | | |
| 2737 | | |
| 2738 | | /*********************************************************************/ |
| 2739 | | /** FillSmoothTexPCHorizontalLine **/ |
| 2740 | | /** Input: Color Buffer (framebuffer), depth buffer, width and **/ |
| 2741 | | /** height of framebuffer, starting, and ending values **/ |
| 2742 | | /** for x and y, constant y. Fills horizontally with **/ |
| 2743 | | /** z,r,g,b interpolation. **/ |
| 2744 | | /** **/ |
| 2745 | | /** Output: none **/ |
| 2746 | | /*********************************************************************/ |
| 2747 | | inline void hng64_state::FillSmoothTexPCHorizontalLine( |
| 2748 | | const polygonRasterOptions& prOptions, |
| 2749 | | int x_start, int x_end, int y, float z_start, float z_delta, |
| 2750 | | float w_start, float w_delta, float r_start, float r_delta, |
| 2751 | | float g_start, float g_delta, float b_start, float b_delta, |
| 2752 | | float s_start, float s_delta, float t_start, float t_delta) |
| 2753 | | { |
| 2754 | | float* db = &(m_depthBuffer3d[(y * m_screen->visible_area().max_x) + x_start]); |
| 2755 | | UINT32* cb = &(m_colorBuffer3d[(y * m_screen->visible_area().max_x) + x_start]); |
| 2756 | | |
| 2757 | | UINT8 paletteEntry = 0; |
| 2758 | | float t_coord, s_coord; |
| 2759 | | const UINT8 *gfx = memregion("textures")->base(); |
| 2760 | | const UINT8 *textureOffset = &gfx[prOptions.texIndex * 1024 * 1024]; |
| 2761 | | |
| 2762 | | for (; x_start <= x_end; x_start++) |
| 2763 | | { |
| 2764 | | if (z_start < (*db)) |
| 2765 | | { |
| 2766 | | // MULTIPLY BACK THROUGH BY W |
| 2767 | | t_coord = t_start / w_start; |
| 2768 | | s_coord = s_start / w_start; |
| 2769 | | |
| 2770 | | if ((prOptions.debugColor & 0xff000000) == 0x01000000) |
| 2771 | | { |
| 2772 | | // UV COLOR MODE |
| 2773 | | *cb = rgb_t(255, (UINT8)(s_coord*255.0f), (UINT8)(t_coord*255.0f), (UINT8)(0)); |
| 2774 | | *db = z_start; |
| 2775 | | } |
| 2776 | | else if ((prOptions.debugColor & 0xff000000) == 0x02000000) |
| 2777 | | { |
| 2778 | | // Lit |
| 2779 | | *cb = rgb_t(255, (UINT8)(r_start/w_start), (UINT8)(g_start/w_start), (UINT8)(b_start/w_start)); |
| 2780 | | *db = z_start; |
| 2781 | | } |
| 2782 | | else if ((prOptions.debugColor & 0xff000000) == 0xff000000) |
| 2783 | | { |
| 2784 | | // DEBUG COLOR MODE |
| 2785 | | *cb = prOptions.debugColor; |
| 2786 | | *db = z_start; |
| 2787 | | } |
| 2788 | | else |
| 2789 | | { |
| 2790 | | float textureS = 0.0f; |
| 2791 | | float textureT = 0.0f; |
| 2792 | | |
| 2793 | | // Standard & Half-Res textures |
| 2794 | | if (prOptions.texType == 0x0) |
| 2795 | | { |
| 2796 | | textureS = s_coord * 1024.0f; |
| 2797 | | textureT = t_coord * 1024.0f; |
| 2798 | | } |
| 2799 | | else if (prOptions.texType == 0x1) |
| 2800 | | { |
| 2801 | | textureS = s_coord * 512.0f; |
| 2802 | | textureT = t_coord * 512.0f; |
| 2803 | | } |
| 2804 | | |
| 2805 | | // Small-Page textures |
| 2806 | | if (prOptions.texPageSmall) |
| 2807 | | { |
| 2808 | | textureT = fmod(textureT, 256.0f); |
| 2809 | | textureS = fmod(textureS, 256.0f); |
| 2810 | | |
| 2811 | | textureT += (256.0f * prOptions.texPageHorizOffset); |
| 2812 | | textureS += (256.0f * prOptions.texPageVertOffset); |
| 2813 | | } |
| 2814 | | paletteEntry = textureOffset[((int)textureS)*1024 + (int)textureT]; |
| 2815 | | |
| 2816 | | // Naieve Alpha Implementation (?) - don't draw if you're at texture index 0... |
| 2817 | | if (paletteEntry != 0) |
| 2818 | | { |
| 2819 | | // The color out of the texture |
| 2820 | | paletteEntry %= prOptions.palPageSize; |
| 2821 | | rgb_t color = m_palette->pen(prOptions.palOffset + paletteEntry); |
| 2822 | | |
| 2823 | | // Apply the lighting |
| 2824 | | float rIntensity = (r_start/w_start) / 255.0f; |
| 2825 | | float gIntensity = (g_start/w_start) / 255.0f; |
| 2826 | | float bIntensity = (b_start/w_start) / 255.0f; |
| 2827 | | float red = color.r() * rIntensity; |
| 2828 | | float green = color.g() * gIntensity; |
| 2829 | | float blue = color.b() * bIntensity; |
| 2830 | | |
| 2831 | | // Clamp and finalize |
| 2832 | | red = color.r() + red; |
| 2833 | | green = color.g() + green; |
| 2834 | | blue = color.b() + blue; |
| 2835 | | |
| 2836 | | if (red >= 255) red = 255; |
| 2837 | | if (green >= 255) green = 255; |
| 2838 | | if (blue >= 255) blue = 255; |
| 2839 | | |
| 2840 | | color = rgb_t(255, (UINT8)red, (UINT8)green, (UINT8)blue); |
| 2841 | | |
| 2842 | | *cb = color; |
| 2843 | | *db = z_start; |
| 2844 | | } |
| 2845 | | } |
| 2846 | | } |
| 2847 | | db++; |
| 2848 | | cb++; |
| 2849 | | z_start += z_delta; |
| 2850 | | w_start += w_delta; |
| 2851 | | r_start += r_delta; |
| 2852 | | g_start += g_delta; |
| 2853 | | b_start += b_delta; |
| 2854 | | s_start += s_delta; |
| 2855 | | t_start += t_delta; |
| 2856 | | } |
| 2857 | | } |
| 2858 | | |
| 2859 | | //---------------------------------------------------------------------------- |
| 2860 | | // Given 3D triangle ABC in screen space with clipped coordinates within the following |
| 2861 | | // bounds: x in [0,W], y in [0,H], z in [0,1]. The origin for (x,y) is in the bottom |
| 2862 | | // left corner of the pixel grid. z=0 is the near plane and z=1 is the far plane, |
| 2863 | | // so lesser values are closer. The coordinates of the pixels are evenly spaced |
| 2864 | | // in x and y 1 units apart starting at the bottom-left pixel with coords |
| 2865 | | // (0.5,0.5). In other words, the pixel sample point is in the center of the |
| 2866 | | // rectangular grid cell containing the pixel sample. The framebuffer has |
| 2867 | | // dimensions width x height (WxH). The Color buffer is a 1D array (row-major |
| 2868 | | // order) with 3 unsigned chars per pixel (24-bit color). The Depth buffer is |
| 2869 | | // a 1D array (also row-major order) with a float value per pixel |
| 2870 | | // For a pixel location (x,y) we can obtain |
| 2871 | | // the Color and Depth array locations as: Color[(((int)y)*W+((int)x))*3] |
| 2872 | | // (for the red value, green is offset +1, and blue is offset +2 and |
| 2873 | | // Depth[((int)y)*W+((int)x)]. Fills the pixels contained in the triangle |
| 2874 | | // with the global current color and the properly linearly interpolated depth |
| 2875 | | // value (performs Z-buffer depth test before writing new pixel). |
| 2876 | | // Pixel samples that lie inside the triangle edges are filled with |
| 2877 | | // a bias towards the minimum values (samples that lie exactly on a triangle |
| 2878 | | // edge are filled only for minimum x values along a horizontal span and for |
| 2879 | | // minimum y values, samples lying on max values are not filled). |
| 2880 | | // Per-vertex colors are RGB floating point triplets in [0.0,255.0]. The vertices |
| 2881 | | // include their w-components for use in linearly interpolating perspectively |
| 2882 | | // correct color (RGB) and texture-coords (st) across the face of the triangle. |
| 2883 | | // A texture image of RGB floating point triplets of size TWxWH is also given. |
| 2884 | | // Texture colors are normalized RGB values in [0,1]. |
| 2885 | | // clamp and repeat wrapping modes : Wrapping={0,1} |
| 2886 | | // nearest and bilinear filtering: Filtering={0,1} |
| 2887 | | // replace and modulate application modes: Function={0,1} |
| 2888 | | //--------------------------------------------------------------------------- |
| 2889 | | void hng64_state::RasterizeTriangle_SMOOTH_TEX_PC( |
| 2890 | | float A[4], float B[4], float C[4], |
| 2891 | | float Ca[3], float Cb[3], float Cc[3], // PER-VERTEX RGB COLORS |
| 2892 | | float Ta[2], float Tb[2], float Tc[2], // PER-VERTEX (S,T) TEX-COORDS |
| 2893 | | const polygonRasterOptions& prOptions) |
| 2894 | | { |
| 2895 | | // Get our order of points by increasing y-coord |
| 2896 | | float *p_min = ((A[1] <= B[1]) && (A[1] <= C[1])) ? A : ((B[1] <= A[1]) && (B[1] <= C[1])) ? B : C; |
| 2897 | | float *p_max = ((A[1] >= B[1]) && (A[1] >= C[1])) ? A : ((B[1] >= A[1]) && (B[1] >= C[1])) ? B : C; |
| 2898 | | float *p_mid = ((A != p_min) && (A != p_max)) ? A : ((B != p_min) && (B != p_max)) ? B : C; |
| 2899 | | |
| 2900 | | // Perspectively correct color interpolation, interpolate r/w, g/w, b/w, then divide by 1/w at each pixel (A[3] = 1/w) |
| 2901 | | float ca[3], cb[3], cc[3]; |
| 2902 | | float ta[2], tb[2], tc[2]; |
| 2903 | | |
| 2904 | | float *c_min; |
| 2905 | | float *c_mid; |
| 2906 | | float *c_max; |
| 2907 | | |
| 2908 | | // We must keep the tex coords straight with the point ordering |
| 2909 | | float *t_min; |
| 2910 | | float *t_mid; |
| 2911 | | float *t_max; |
| 2912 | | |
| 2913 | | // Find out control points for y, this divides the triangle into upper and lower |
| 2914 | | int y_min; |
| 2915 | | int y_max; |
| 2916 | | int y_mid; |
| 2917 | | |
| 2918 | | // Compute the slopes of each line, and color this is used to determine the interpolation |
| 2919 | | float x1_slope; |
| 2920 | | float x2_slope; |
| 2921 | | float z1_slope; |
| 2922 | | float z2_slope; |
| 2923 | | float w1_slope; |
| 2924 | | float w2_slope; |
| 2925 | | float r1_slope; |
| 2926 | | float r2_slope; |
| 2927 | | float g1_slope; |
| 2928 | | float g2_slope; |
| 2929 | | float b1_slope; |
| 2930 | | float b2_slope; |
| 2931 | | float s1_slope; |
| 2932 | | float s2_slope; |
| 2933 | | float t1_slope; |
| 2934 | | float t2_slope; |
| 2935 | | |
| 2936 | | // Compute the t values used in the equation Ax = Ax + (Bx - Ax)*t |
| 2937 | | // We only need one t, because it is only used to compute the start. |
| 2938 | | // Create storage for the interpolated x and z values for both lines |
| 2939 | | // also for the RGB interpolation |
| 2940 | | float t; |
| 2941 | | float x1_interp; |
| 2942 | | float z1_interp; |
| 2943 | | float w1_interp; |
| 2944 | | float r1_interp; |
| 2945 | | float g1_interp; |
| 2946 | | float b1_interp; |
| 2947 | | float s1_interp; |
| 2948 | | float t1_interp; |
| 2949 | | |
| 2950 | | float x2_interp; |
| 2951 | | float z2_interp; |
| 2952 | | float w2_interp; |
| 2953 | | float r2_interp; |
| 2954 | | float g2_interp; |
| 2955 | | float b2_interp; |
| 2956 | | float s2_interp; |
| 2957 | | float t2_interp; |
| 2958 | | |
| 2959 | | // Create storage for the horizontal interpolation of z and RGB color and its starting points |
| 2960 | | // This is used to fill the triangle horizontally |
| 2961 | | int x_start, x_end; |
| 2962 | | float z_interp_x, z_delta_x; |
| 2963 | | float w_interp_x, w_delta_x; |
| 2964 | | float r_interp_x, r_delta_x; |
| 2965 | | float g_interp_x, g_delta_x; |
| 2966 | | float b_interp_x, b_delta_x; |
| 2967 | | float s_interp_x, s_delta_x; |
| 2968 | | float t_interp_x, t_delta_x; |
| 2969 | | |
| 2970 | | ca[0] = Ca[0]; ca[1] = Ca[1]; ca[2] = Ca[2]; |
| 2971 | | cb[0] = Cb[0]; cb[1] = Cb[1]; cb[2] = Cb[2]; |
| 2972 | | cc[0] = Cc[0]; cc[1] = Cc[1]; cc[2] = Cc[2]; |
| 2973 | | |
| 2974 | | // Perspectively correct tex interpolation, interpolate s/w, t/w, then divide by 1/w at each pixel (A[3] = 1/w) |
| 2975 | | ta[0] = Ta[0]; ta[1] = Ta[1]; |
| 2976 | | tb[0] = Tb[0]; tb[1] = Tb[1]; |
| 2977 | | tc[0] = Tc[0]; tc[1] = Tc[1]; |
| 2978 | | |
| 2979 | | // We must keep the colors straight with the point ordering |
| 2980 | | c_min = (p_min == A) ? ca : (p_min == B) ? cb : cc; |
| 2981 | | c_mid = (p_mid == A) ? ca : (p_mid == B) ? cb : cc; |
| 2982 | | c_max = (p_max == A) ? ca : (p_max == B) ? cb : cc; |
| 2983 | | |
| 2984 | | // We must keep the tex coords straight with the point ordering |
| 2985 | | t_min = (p_min == A) ? ta : (p_min == B) ? tb : tc; |
| 2986 | | t_mid = (p_mid == A) ? ta : (p_mid == B) ? tb : tc; |
| 2987 | | t_max = (p_max == A) ? ta : (p_max == B) ? tb : tc; |
| 2988 | | |
| 2989 | | // Find out control points for y, this divides the triangle into upper and lower |
| 2990 | | y_min = (((int)p_min[1]) + 0.5 >= p_min[1]) ? (int)p_min[1] : ((int)p_min[1]) + 1; |
| 2991 | | y_max = (((int)p_max[1]) + 0.5 < p_max[1]) ? (int)p_max[1] : ((int)p_max[1]) - 1; |
| 2992 | | y_mid = (((int)p_mid[1]) + 0.5 >= p_mid[1]) ? (int)p_mid[1] : ((int)p_mid[1]) + 1; |
| 2993 | | |
| 2994 | | // Compute the slopes of each line, and color this is used to determine the interpolation |
| 2995 | | x1_slope = (p_max[0] - p_min[0]) / (p_max[1] - p_min[1]); |
| 2996 | | x2_slope = (p_mid[0] - p_min[0]) / (p_mid[1] - p_min[1]); |
| 2997 | | z1_slope = (p_max[2] - p_min[2]) / (p_max[1] - p_min[1]); |
| 2998 | | z2_slope = (p_mid[2] - p_min[2]) / (p_mid[1] - p_min[1]); |
| 2999 | | w1_slope = (p_max[3] - p_min[3]) / (p_max[1] - p_min[1]); |
| 3000 | | w2_slope = (p_mid[3] - p_min[3]) / (p_mid[1] - p_min[1]); |
| 3001 | | r1_slope = (c_max[0] - c_min[0]) / (p_max[1] - p_min[1]); |
| 3002 | | r2_slope = (c_mid[0] - c_min[0]) / (p_mid[1] - p_min[1]); |
| 3003 | | g1_slope = (c_max[1] - c_min[1]) / (p_max[1] - p_min[1]); |
| 3004 | | g2_slope = (c_mid[1] - c_min[1]) / (p_mid[1] - p_min[1]); |
| 3005 | | b1_slope = (c_max[2] - c_min[2]) / (p_max[1] - p_min[1]); |
| 3006 | | b2_slope = (c_mid[2] - c_min[2]) / (p_mid[1] - p_min[1]); |
| 3007 | | s1_slope = (t_max[0] - t_min[0]) / (p_max[1] - p_min[1]); |
| 3008 | | s2_slope = (t_mid[0] - t_min[0]) / (p_mid[1] - p_min[1]); |
| 3009 | | t1_slope = (t_max[1] - t_min[1]) / (p_max[1] - p_min[1]); |
| 3010 | | t2_slope = (t_mid[1] - t_min[1]) / (p_mid[1] - p_min[1]); |
| 3011 | | |
| 3012 | | // Compute the t values used in the equation Ax = Ax + (Bx - Ax)*t |
| 3013 | | // We only need one t, because it is only used to compute the start. |
| 3014 | | // Create storage for the interpolated x and z values for both lines |
| 3015 | | // also for the RGB interpolation |
| 3016 | | t = (((float)y_min) + 0.5 - p_min[1]) / (p_max[1] - p_min[1]); |
| 3017 | | x1_interp = p_min[0] + (p_max[0] - p_min[0]) * t; |
| 3018 | | z1_interp = p_min[2] + (p_max[2] - p_min[2]) * t; |
| 3019 | | w1_interp = p_min[3] + (p_max[3] - p_min[3]) * t; |
| 3020 | | r1_interp = c_min[0] + (c_max[0] - c_min[0]) * t; |
| 3021 | | g1_interp = c_min[1] + (c_max[1] - c_min[1]) * t; |
| 3022 | | b1_interp = c_min[2] + (c_max[2] - c_min[2]) * t; |
| 3023 | | s1_interp = t_min[0] + (t_max[0] - t_min[0]) * t; |
| 3024 | | t1_interp = t_min[1] + (t_max[1] - t_min[1]) * t; |
| 3025 | | |
| 3026 | | t = (((float)y_min) + 0.5 - p_min[1]) / (p_mid[1] - p_min[1]); |
| 3027 | | x2_interp = p_min[0] + (p_mid[0] - p_min[0]) * t; |
| 3028 | | z2_interp = p_min[2] + (p_mid[2] - p_min[2]) * t; |
| 3029 | | w2_interp = p_min[3] + (p_mid[3] - p_min[3]) * t; |
| 3030 | | r2_interp = c_min[0] + (c_mid[0] - c_min[0]) * t; |
| 3031 | | g2_interp = c_min[1] + (c_mid[1] - c_min[1]) * t; |
| 3032 | | b2_interp = c_min[2] + (c_mid[2] - c_min[2]) * t; |
| 3033 | | s2_interp = t_min[0] + (t_mid[0] - t_min[0]) * t; |
| 3034 | | t2_interp = t_min[1] + (t_mid[1] - t_min[1]) * t; |
| 3035 | | |
| 3036 | | // First work on the bottom half of the triangle |
| 3037 | | // I'm using y_min as the incrementer because it saves space and we don't need it anymore |
| 3038 | | for (; y_min < y_mid; y_min++) { |
| 3039 | | // We always want to fill left to right, so we have 2 main cases |
| 3040 | | // Compute the integer starting and ending points and the appropriate z by |
| 3041 | | // interpolating. Remember the pixels are in the middle of the grid, i.e. (0.5,0.5,0.5) |
| 3042 | | if (x1_interp < x2_interp) { |
| 3043 | | x_start = ((((int)x1_interp) + 0.5) >= x1_interp) ? (int)x1_interp : ((int)x1_interp) + 1; |
| 3044 | | x_end = ((((int)x2_interp) + 0.5) < x2_interp) ? (int)x2_interp : ((int)x2_interp) - 1; |
| 3045 | | z_delta_x = (z2_interp - z1_interp) / (x2_interp - x1_interp); |
| 3046 | | w_delta_x = (w2_interp - w1_interp) / (x2_interp - x1_interp); |
| 3047 | | r_delta_x = (r2_interp - r1_interp) / (x2_interp - x1_interp); |
| 3048 | | g_delta_x = (g2_interp - g1_interp) / (x2_interp - x1_interp); |
| 3049 | | b_delta_x = (b2_interp - b1_interp) / (x2_interp - x1_interp); |
| 3050 | | s_delta_x = (s2_interp - s1_interp) / (x2_interp - x1_interp); |
| 3051 | | t_delta_x = (t2_interp - t1_interp) / (x2_interp - x1_interp); |
| 3052 | | t = (x_start + 0.5 - x1_interp) / (x2_interp - x1_interp); |
| 3053 | | z_interp_x = z1_interp + (z2_interp - z1_interp) * t; |
| 3054 | | w_interp_x = w1_interp + (w2_interp - w1_interp) * t; |
| 3055 | | r_interp_x = r1_interp + (r2_interp - r1_interp) * t; |
| 3056 | | g_interp_x = g1_interp + (g2_interp - g1_interp) * t; |
| 3057 | | b_interp_x = b1_interp + (b2_interp - b1_interp) * t; |
| 3058 | | s_interp_x = s1_interp + (s2_interp - s1_interp) * t; |
| 3059 | | t_interp_x = t1_interp + (t2_interp - t1_interp) * t; |
| 3060 | | |
| 3061 | | } else { |
| 3062 | | x_start = ((((int)x2_interp) + 0.5) >= x2_interp) ? (int)x2_interp : ((int)x2_interp) + 1; |
| 3063 | | x_end = ((((int)x1_interp) + 0.5) < x1_interp) ? (int)x1_interp : ((int)x1_interp) - 1; |
| 3064 | | z_delta_x = (z1_interp - z2_interp) / (x1_interp - x2_interp); |
| 3065 | | w_delta_x = (w1_interp - w2_interp) / (x1_interp - x2_interp); |
| 3066 | | r_delta_x = (r1_interp - r2_interp) / (x1_interp - x2_interp); |
| 3067 | | g_delta_x = (g1_interp - g2_interp) / (x1_interp - x2_interp); |
| 3068 | | b_delta_x = (b1_interp - b2_interp) / (x1_interp - x2_interp); |
| 3069 | | s_delta_x = (s1_interp - s2_interp) / (x1_interp - x2_interp); |
| 3070 | | t_delta_x = (t1_interp - t2_interp) / (x1_interp - x2_interp); |
| 3071 | | t = (x_start + 0.5 - x2_interp) / (x1_interp - x2_interp); |
| 3072 | | z_interp_x = z2_interp + (z1_interp - z2_interp) * t; |
| 3073 | | w_interp_x = w2_interp + (w1_interp - w2_interp) * t; |
| 3074 | | r_interp_x = r2_interp + (r1_interp - r2_interp) * t; |
| 3075 | | g_interp_x = g2_interp + (g1_interp - g2_interp) * t; |
| 3076 | | b_interp_x = b2_interp + (b1_interp - b2_interp) * t; |
| 3077 | | s_interp_x = s2_interp + (s1_interp - s2_interp) * t; |
| 3078 | | t_interp_x = t2_interp + (t1_interp - t2_interp) * t; |
| 3079 | | } |
| 3080 | | |
| 3081 | | // Pass the horizontal line to the filler, this could be put in the routine |
| 3082 | | // then interpolate for the next values of x and z |
| 3083 | | FillSmoothTexPCHorizontalLine( prOptions, |
| 3084 | | x_start, x_end, y_min, z_interp_x, z_delta_x, w_interp_x, w_delta_x, |
| 3085 | | r_interp_x, r_delta_x, g_interp_x, g_delta_x, b_interp_x, b_delta_x, |
| 3086 | | s_interp_x, s_delta_x, t_interp_x, t_delta_x); |
| 3087 | | x1_interp += x1_slope; z1_interp += z1_slope; |
| 3088 | | x2_interp += x2_slope; z2_interp += z2_slope; |
| 3089 | | r1_interp += r1_slope; r2_interp += r2_slope; |
| 3090 | | g1_interp += g1_slope; g2_interp += g2_slope; |
| 3091 | | b1_interp += b1_slope; b2_interp += b2_slope; |
| 3092 | | w1_interp += w1_slope; w2_interp += w2_slope; |
| 3093 | | s1_interp += s1_slope; s2_interp += s2_slope; |
| 3094 | | t1_interp += t1_slope; t2_interp += t2_slope; |
| 3095 | | } |
| 3096 | | |
| 3097 | | // Now do the same thing for the top half of the triangle. |
| 3098 | | // We only need to recompute the x2 line because it changes at the midpoint |
| 3099 | | x2_slope = (p_max[0] - p_mid[0]) / (p_max[1] - p_mid[1]); |
| 3100 | | z2_slope = (p_max[2] - p_mid[2]) / (p_max[1] - p_mid[1]); |
| 3101 | | w2_slope = (p_max[3] - p_mid[3]) / (p_max[1] - p_mid[1]); |
| 3102 | | r2_slope = (c_max[0] - c_mid[0]) / (p_max[1] - p_mid[1]); |
| 3103 | | g2_slope = (c_max[1] - c_mid[1]) / (p_max[1] - p_mid[1]); |
| 3104 | | b2_slope = (c_max[2] - c_mid[2]) / (p_max[1] - p_mid[1]); |
| 3105 | | s2_slope = (t_max[0] - t_mid[0]) / (p_max[1] - p_mid[1]); |
| 3106 | | t2_slope = (t_max[1] - t_mid[1]) / (p_max[1] - p_mid[1]); |
| 3107 | | |
| 3108 | | t = (((float)y_mid) + 0.5 - p_mid[1]) / (p_max[1] - p_mid[1]); |
| 3109 | | x2_interp = p_mid[0] + (p_max[0] - p_mid[0]) * t; |
| 3110 | | z2_interp = p_mid[2] + (p_max[2] - p_mid[2]) * t; |
| 3111 | | w2_interp = p_mid[3] + (p_max[3] - p_mid[3]) * t; |
| 3112 | | r2_interp = c_mid[0] + (c_max[0] - c_mid[0]) * t; |
| 3113 | | g2_interp = c_mid[1] + (c_max[1] - c_mid[1]) * t; |
| 3114 | | b2_interp = c_mid[2] + (c_max[2] - c_mid[2]) * t; |
| 3115 | | s2_interp = t_mid[0] + (t_max[0] - t_mid[0]) * t; |
| 3116 | | t2_interp = t_mid[1] + (t_max[1] - t_mid[1]) * t; |
| 3117 | | |
| 3118 | | // We've seen this loop before haven't we? |
| 3119 | | // I'm using y_mid as the incrementer because it saves space and we don't need it anymore |
| 3120 | | for (; y_mid <= y_max; y_mid++) { |
| 3121 | | if (x1_interp < x2_interp) { |
| 3122 | | x_start = ((((int)x1_interp) + 0.5) >= x1_interp) ? (int)x1_interp : ((int)x1_interp) + 1; |
| 3123 | | x_end = ((((int)x2_interp) + 0.5) < x2_interp) ? (int)x2_interp : ((int)x2_interp) - 1; |
| 3124 | | z_delta_x = (z2_interp - z1_interp) / (x2_interp - x1_interp); |
| 3125 | | w_delta_x = (w2_interp - w1_interp) / (x2_interp - x1_interp); |
| 3126 | | r_delta_x = (r2_interp - r1_interp) / (x2_interp - x1_interp); |
| 3127 | | g_delta_x = (g2_interp - g1_interp) / (x2_interp - x1_interp); |
| 3128 | | b_delta_x = (b2_interp - b1_interp) / (x2_interp - x1_interp); |
| 3129 | | s_delta_x = (s2_interp - s1_interp) / (x2_interp - x1_interp); |
| 3130 | | t_delta_x = (t2_interp - t1_interp) / (x2_interp - x1_interp); |
| 3131 | | t = (x_start + 0.5 - x1_interp) / (x2_interp - x1_interp); |
| 3132 | | z_interp_x = z1_interp + (z2_interp - z1_interp) * t; |
| 3133 | | w_interp_x = w1_interp + (w2_interp - w1_interp) * t; |
| 3134 | | r_interp_x = r1_interp + (r2_interp - r1_interp) * t; |
| 3135 | | g_interp_x = g1_interp + (g2_interp - g1_interp) * t; |
| 3136 | | b_interp_x = b1_interp + (b2_interp - b1_interp) * t; |
| 3137 | | s_interp_x = s1_interp + (s2_interp - s1_interp) * t; |
| 3138 | | t_interp_x = t1_interp + (t2_interp - t1_interp) * t; |
| 3139 | | |
| 3140 | | } else { |
| 3141 | | x_start = ((((int)x2_interp) + 0.5) >= x2_interp) ? (int)x2_interp : ((int)x2_interp) + 1; |
| 3142 | | x_end = ((((int)x1_interp) + 0.5) < x1_interp) ? (int)x1_interp : ((int)x1_interp) - 1; |
| 3143 | | z_delta_x = (z1_interp - z2_interp) / (x1_interp - x2_interp); |
| 3144 | | w_delta_x = (w1_interp - w2_interp) / (x1_interp - x2_interp); |
| 3145 | | r_delta_x = (r1_interp - r2_interp) / (x1_interp - x2_interp); |
| 3146 | | g_delta_x = (g1_interp - g2_interp) / (x1_interp - x2_interp); |
| 3147 | | b_delta_x = (b1_interp - b2_interp) / (x1_interp - x2_interp); |
| 3148 | | s_delta_x = (s1_interp - s2_interp) / (x1_interp - x2_interp); |
| 3149 | | t_delta_x = (t1_interp - t2_interp) / (x1_interp - x2_interp); |
| 3150 | | t = (x_start + 0.5 - x2_interp) / (x1_interp - x2_interp); |
| 3151 | | z_interp_x = z2_interp + (z1_interp - z2_interp) * t; |
| 3152 | | w_interp_x = w2_interp + (w1_interp - w2_interp) * t; |
| 3153 | | r_interp_x = r2_interp + (r1_interp - r2_interp) * t; |
| 3154 | | g_interp_x = g2_interp + (g1_interp - g2_interp) * t; |
| 3155 | | b_interp_x = b2_interp + (b1_interp - b2_interp) * t; |
| 3156 | | s_interp_x = s2_interp + (s1_interp - s2_interp) * t; |
| 3157 | | t_interp_x = t2_interp + (t1_interp - t2_interp) * t; |
| 3158 | | } |
| 3159 | | |
| 3160 | | // Pass the horizontal line to the filler, this could be put in the routine |
| 3161 | | // then interpolate for the next values of x and z |
| 3162 | | FillSmoothTexPCHorizontalLine( prOptions, |
| 3163 | | x_start, x_end, y_mid, z_interp_x, z_delta_x, w_interp_x, w_delta_x, |
| 3164 | | r_interp_x, r_delta_x, g_interp_x, g_delta_x, b_interp_x, b_delta_x, |
| 3165 | | s_interp_x, s_delta_x, t_interp_x, t_delta_x); |
| 3166 | | x1_interp += x1_slope; z1_interp += z1_slope; |
| 3167 | | x2_interp += x2_slope; z2_interp += z2_slope; |
| 3168 | | r1_interp += r1_slope; r2_interp += r2_slope; |
| 3169 | | g1_interp += g1_slope; g2_interp += g2_slope; |
| 3170 | | b1_interp += b1_slope; b2_interp += b2_slope; |
| 3171 | | w1_interp += w1_slope; w2_interp += w2_slope; |
| 3172 | | s1_interp += s1_slope; s2_interp += s2_slope; |
| 3173 | | t1_interp += t1_slope; t2_interp += t2_slope; |
| 3174 | | } |
| 3175 | | } |
| 3176 | | |
| 3177 | | void hng64_state::drawShaded( struct polygon *p) |
| 3178 | | { |
| 3179 | | // The perspective-correct texture divide... |
| 3180 | | // !!! There is a very good chance the HNG64 hardware does not do perspective-correct texture-mapping !!! |
| 3181 | | int j; |
| 3182 | | for (j = 0; j < p->n; j++) |
| 3183 | | { |
| 3184 | | p->vert[j].clipCoords[3] = 1.0f / p->vert[j].clipCoords[3]; |
| 3185 | | p->vert[j].light[0] = p->vert[j].light[0] * p->vert[j].clipCoords[3]; |
| 3186 | | p->vert[j].light[1] = p->vert[j].light[1] * p->vert[j].clipCoords[3]; |
| 3187 | | p->vert[j].light[2] = p->vert[j].light[2] * p->vert[j].clipCoords[3]; |
| 3188 | | p->vert[j].texCoords[0] = p->vert[j].texCoords[0] * p->vert[j].clipCoords[3]; |
| 3189 | | p->vert[j].texCoords[1] = p->vert[j].texCoords[1] * p->vert[j].clipCoords[3]; |
| 3190 | | } |
| 3191 | | |
| 3192 | | // Set up the struct that will pass the polygon's options around. |
| 3193 | | polygonRasterOptions prOptions; |
| 3194 | | prOptions.texType = p->texType; |
| 3195 | | prOptions.texIndex = p->texIndex; |
| 3196 | | prOptions.palOffset = p->palOffset; |
| 3197 | | prOptions.palPageSize = p->palPageSize; |
| 3198 | | prOptions.debugColor = p->debugColor; |
| 3199 | | prOptions.texPageSmall = p->texPageSmall; |
| 3200 | | prOptions.texPageHorizOffset = p->texPageHorizOffset; |
| 3201 | | prOptions.texPageVertOffset = p->texPageVertOffset; |
| 3202 | | |
| 3203 | | for (j = 1; j < p->n-1; j++) |
| 3204 | | { |
| 3205 | | RasterizeTriangle_SMOOTH_TEX_PC( |
| 3206 | | p->vert[0].clipCoords, p->vert[j].clipCoords, p->vert[j+1].clipCoords, |
| 3207 | | p->vert[0].light, p->vert[j].light, p->vert[j+1].light, |
| 3208 | | p->vert[0].texCoords, p->vert[j].texCoords, p->vert[j+1].texCoords, |
| 3209 | | prOptions); |
| 3210 | | } |
| 3211 | | } |
trunk/src/mame/video/hng64_3d.c
| r0 | r244701 | |
| 1 | /* Hyper NeoGeo 64 - 3D bits */ |
| 2 | |
| 3 | // todo, use poly.c |
| 4 | |
| 5 | #include "includes/hng64.h" |
| 6 | |
| 7 | |
| 8 | |
| 9 | // Hardware calls these '3d buffers' |
| 10 | // They're only read during the startup check of fatfurwa. Z-buffer memory? Front buffer, back buffer? |
| 11 | // They're definitely mirrored in the startup test, according to ElSemi |
| 12 | // 30100000-3011ffff is framebuffer A0 |
| 13 | // 30120000-3013ffff is framebuffer A1 |
| 14 | // 30140000-3015ffff is ZBuffer A |
| 15 | |
| 16 | READ32_MEMBER(hng64_state::hng64_3d_1_r) |
| 17 | { |
| 18 | return m_3d_1[offset]; |
| 19 | } |
| 20 | |
| 21 | WRITE32_MEMBER(hng64_state::hng64_3d_1_w) |
| 22 | { |
| 23 | COMBINE_DATA (&m_3d_1[offset]); |
| 24 | } |
| 25 | |
| 26 | READ32_MEMBER(hng64_state::hng64_3d_2_r) |
| 27 | { |
| 28 | return m_3d_2[offset]; |
| 29 | } |
| 30 | |
| 31 | WRITE32_MEMBER(hng64_state::hng64_3d_2_w) |
| 32 | { |
| 33 | COMBINE_DATA (&m_3d_2[offset]); |
| 34 | } |
| 35 | |
| 36 | // The 3d 'display list' |
| 37 | WRITE16_MEMBER(hng64_state::dl_w) |
| 38 | { |
| 39 | COMBINE_DATA(&m_dl[offset]); |
| 40 | } |
| 41 | |
| 42 | |
| 43 | |
| 44 | |
| 45 | /* TODO: different param for both Samurai games, less FIFO to process? */ |
| 46 | WRITE32_MEMBER(hng64_state::dl_upload_w) |
| 47 | { |
| 48 | // this is written after the game uploads 16 packets, each 32 bytes long (2x 16 words?) |
| 49 | // we're assuming it to be a 'send to 3d hardware' trigger. |
| 50 | // this can be called multiple times per frame (at least 2, as long as it gets the expected interrupt / status flags) |
| 51 | |
| 52 | for(int packetStart=0;packetStart<0x200;packetStart+=32) |
| 53 | { |
| 54 | // Send it off to the 3d subsystem. |
| 55 | hng64_command3d( &m_dl[packetStart/2] ); |
| 56 | } |
| 57 | |
| 58 | machine().scheduler().timer_set(m_maincpu->cycles_to_attotime(0x200*8), timer_expired_delegate(FUNC(hng64_state::hng64_3dfifo_processed),this)); |
| 59 | } |
| 60 | |
| 61 | TIMER_CALLBACK_MEMBER(hng64_state::hng64_3dfifo_processed ) |
| 62 | { |
| 63 | // ... |
| 64 | m_set_irq(0x0008); |
| 65 | } |
| 66 | |
| 67 | |
| 68 | /* Note: Samurai Shodown games never calls bit 1, so it can't be framebuffer clear. It also calls bit 3 at start-up, meaning unknown */ |
| 69 | WRITE32_MEMBER(hng64_state::dl_control_w) // This handles framebuffers |
| 70 | { |
| 71 | // printf("dl_control_w %08x %08x\n", data, mem_mask); |
| 72 | |
| 73 | //if(data & 2) // swap buffers |
| 74 | //{ |
| 75 | // clear3d(); |
| 76 | //} |
| 77 | |
| 78 | // printf("%02x\n",data); |
| 79 | |
| 80 | // if(data & 1) // process DMA from 3d FIFO to framebuffer |
| 81 | |
| 82 | // if(data & 4) // reset buffer count |
| 83 | } |
| 84 | |
| 85 | |
| 86 | |
| 87 | |
| 88 | //////////////////// |
| 89 | // 3d 'Functions' // |
| 90 | //////////////////// |
| 91 | |
| 92 | void hng64_state::printPacket(const UINT16* packet, int hex) |
| 93 | { |
| 94 | if (hex) |
| 95 | { |
| 96 | printf("Packet : %04x %04x 2:%04x %04x 4:%04x %04x 6:%04x %04x 8:%04x %04x 10:%04x %04x 12:%04x %04x 14:%04x %04x\n", |
| 97 | packet[0], packet[1], |
| 98 | packet[2], packet[3], |
| 99 | packet[4], packet[5], |
| 100 | packet[6], packet[7], |
| 101 | packet[8], packet[9], |
| 102 | packet[10], packet[11], |
| 103 | packet[12], packet[13], |
| 104 | packet[14], packet[15]); |
| 105 | } |
| 106 | else |
| 107 | { |
| 108 | printf("Packet : %04x %3.4f 2:%3.4f %3.4f 4:%3.4f %3.4f 6:%3.4f %3.4f 8:%3.4f %3.4f 10:%3.4f %3.4f 12:%3.4f %3.4f 14:%3.4f %3.4f\n", |
| 109 | packet[0], uToF(packet[1] )*128, |
| 110 | uToF(packet[2] )*128, uToF(packet[3] )*128, |
| 111 | uToF(packet[4] )*128, uToF(packet[5] )*128, |
| 112 | uToF(packet[6] )*128, uToF(packet[7] )*128, |
| 113 | uToF(packet[8] )*128, uToF(packet[9] )*128, |
| 114 | uToF(packet[10])*128, uToF(packet[11])*128, |
| 115 | uToF(packet[12])*128, uToF(packet[13])*128, |
| 116 | uToF(packet[14])*128, uToF(packet[15])*128); |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | // Operation 0001 |
| 121 | // Camera transformation. |
| 122 | void hng64_state::setCameraTransformation(const UINT16* packet) |
| 123 | { |
| 124 | float *cameraMatrix = m_cameraMatrix; |
| 125 | |
| 126 | /*////////////// |
| 127 | // PACKET FORMAT |
| 128 | // [0] - 0001 ... ID |
| 129 | // [1] - xxxx ... Extrinsic camera matrix |
| 130 | // [2] - xxxx ... Extrinsic camera matrix |
| 131 | // [3] - xxxx ... Extrinsic camera matrix |
| 132 | // [4] - xxxx ... Extrinsic camera matrix |
| 133 | // [5] - xxxx ... Extrinsic camera matrix |
| 134 | // [6] - xxxx ... Extrinsic camera matrix |
| 135 | // [7] - xxxx ... Extrinsic camera matrix |
| 136 | // [8] - xxxx ... Extrinsic camera matrix |
| 137 | // [9] - xxxx ... Extrinsic camera matrix |
| 138 | // [10] - xxxx ... Extrinsic camera matrix |
| 139 | // [11] - xxxx ... Extrinsic camera matrix |
| 140 | // [12] - xxxx ... Extrinsic camera matrix |
| 141 | // [13] - ???? ... ? Flips per-frame during fatfurwa 'HNG64' |
| 142 | // [14] - ???? ... ? Could be some floating-point values during buriki 'door run' |
| 143 | // [15] - ???? ... ? Same as 13 & 14 |
| 144 | ////////////*/ |
| 145 | // CAMERA TRANSFORMATION MATRIX |
| 146 | cameraMatrix[0] = uToF(packet[1]); |
| 147 | cameraMatrix[4] = uToF(packet[2]); |
| 148 | cameraMatrix[8] = uToF(packet[3]); |
| 149 | cameraMatrix[3] = 0.0f; |
| 150 | |
| 151 | cameraMatrix[1] = uToF(packet[4]); |
| 152 | cameraMatrix[5] = uToF(packet[5]); |
| 153 | cameraMatrix[9] = uToF(packet[6]); |
| 154 | cameraMatrix[7] = 0.0f; |
| 155 | |
| 156 | cameraMatrix[2] = uToF(packet[7]); |
| 157 | cameraMatrix[6] = uToF(packet[8]); |
| 158 | cameraMatrix[10] = uToF(packet[9]); |
| 159 | cameraMatrix[11] = 0.0f; |
| 160 | |
| 161 | cameraMatrix[12] = uToF(packet[10]); |
| 162 | cameraMatrix[13] = uToF(packet[11]); |
| 163 | cameraMatrix[14] = uToF(packet[12]); |
| 164 | cameraMatrix[15] = 1.0f; |
| 165 | } |
| 166 | |
| 167 | // Operation 0010 |
| 168 | // Lighting information |
| 169 | void hng64_state::setLighting(const UINT16* packet) |
| 170 | { |
| 171 | float *lightVector = m_lightVector; |
| 172 | |
| 173 | /*////////////// |
| 174 | // PACKET FORMAT |
| 175 | // [0] - 0010 ... ID |
| 176 | // [1] - ???? ... ? Always zero |
| 177 | // [2] - ???? ... ? Always zero |
| 178 | // [3] - xxxx ... X light vector direction |
| 179 | // [4] - xxxx ... Y light vector direction |
| 180 | // [5] - xxxx ... Z light vector direction |
| 181 | // [6] - ???? ... ? Seems to be another light vector ? |
| 182 | // [7] - ???? ... ? Seems to be another light vector ? |
| 183 | // [8] - ???? ... ? Seems to be another light vector ? |
| 184 | // [9] - xxxx ... Strength according to sams64_2 [0000,01ff] |
| 185 | // [10] - ???? ... ? Used in fatfurwa |
| 186 | // [11] - ???? ... ? Used in fatfurwa |
| 187 | // [12] - ???? ... ? Used in fatfurwa |
| 188 | // [13] - ???? ... ? Used in fatfurwa |
| 189 | // [14] - ???? ... ? Used in fatfurwa |
| 190 | // [15] - ???? ... ? Used in fatfurwa |
| 191 | ////////////*/ |
| 192 | if (packet[1] != 0x0000) printf("ZOMG! packet[1] in setLighting function is non-zero!\n"); |
| 193 | if (packet[2] != 0x0000) printf("ZOMG! packet[2] in setLighting function is non-zero!\n"); |
| 194 | |
| 195 | lightVector[0] = uToF(packet[3]); |
| 196 | lightVector[1] = uToF(packet[4]); |
| 197 | lightVector[2] = uToF(packet[5]); |
| 198 | m_lightStrength = uToF(packet[9]); |
| 199 | } |
| 200 | |
| 201 | // Operation 0011 |
| 202 | // Palette / Model flags? |
| 203 | void hng64_state::set3dFlags(const UINT16* packet) |
| 204 | { |
| 205 | /*////////////// |
| 206 | // PACKET FORMAT |
| 207 | // [0] - 0011 ... ID |
| 208 | // [1] - ???? ... |
| 209 | // [2] - ???? ... |
| 210 | // [3] - ???? ... |
| 211 | // [4] - ???? ... |
| 212 | // [5] - ???? ... |
| 213 | // [6] - ???? ... |
| 214 | // [7] - ???? ... |
| 215 | // [8] - xx?? ... Palette offset & ?? |
| 216 | // [9] - ???? ... ? Very much used - seem to bounce around when characters are on screen |
| 217 | // [10] - ???? ... ? '' '' |
| 218 | // [11] - ???? ... ? '' '' |
| 219 | // [12] - ???? ... ? '' '' |
| 220 | // [13] - ???? ... ? '' '' |
| 221 | // [14] - ???? ... ? '' '' |
| 222 | // [15] - ???? ... ? '' '' |
| 223 | ////////////*/ |
| 224 | m_paletteState3d = (packet[8] & 0xff00) >> 8; |
| 225 | } |
| 226 | |
| 227 | // Operation 0012 |
| 228 | // Projection Matrix. |
| 229 | void hng64_state::setCameraProjectionMatrix(const UINT16* packet) |
| 230 | { |
| 231 | float *projectionMatrix = m_projectionMatrix; |
| 232 | |
| 233 | /*////////////// |
| 234 | // PACKET FORMAT |
| 235 | // [0] - 0012 ... ID |
| 236 | // [1] - ???? ... ? Contains a value in buriki's 'how to play' - probably a projection window/offset. |
| 237 | // [2] - ???? ... ? Contains a value in buriki's 'how to play' - probably a projection window/offset. |
| 238 | // [3] - ???? ... ? Contains a value |
| 239 | // [4] - xxxx ... Camera projection near scale |
| 240 | // [5] - xxxx ... Camera projection near height(?) |
| 241 | // [6] - xxxx ... Camera projection near width(?) |
| 242 | // [7] - xxxx ... Camera projection far scale |
| 243 | // [8] - xxxx ... Camera projection far height(?) |
| 244 | // [9] - xxxx ... Camera projection far width(?) |
| 245 | // [10] - xxxx ... Camera projection right |
| 246 | // [11] - xxxx ... Camera projection left |
| 247 | // [12] - xxxx ... Camera projection top |
| 248 | // [13] - xxxx ... Camera projection bottom |
| 249 | // [14] - ???? ... ? Gets data during buriki door-run |
| 250 | // [15] - ???? ... ? Gets data during buriki door-run |
| 251 | ////////////*/ |
| 252 | |
| 253 | // Heisted from GLFrustum - 6 parameters... |
| 254 | float left, right, top, bottom, near_, far_; |
| 255 | |
| 256 | left = uToF(packet[11]); |
| 257 | right = uToF(packet[10]); |
| 258 | top = uToF(packet[12]); |
| 259 | bottom = uToF(packet[13]); |
| 260 | near_ = uToF(packet[6]) + (uToF(packet[6]) * uToF(packet[4])); |
| 261 | far_ = uToF(packet[9]) + (uToF(packet[9]) * uToF(packet[7])); |
| 262 | // (note are likely not 100% correct - I'm not using one of the parameters) |
| 263 | |
| 264 | projectionMatrix[0] = (2.0f*near_)/(right-left); |
| 265 | projectionMatrix[1] = 0.0f; |
| 266 | projectionMatrix[2] = 0.0f; |
| 267 | projectionMatrix[3] = 0.0f; |
| 268 | |
| 269 | projectionMatrix[4] = 0.0f; |
| 270 | projectionMatrix[5] = (2.0f*near_)/(top-bottom); |
| 271 | projectionMatrix[6] = 0.0f; |
| 272 | projectionMatrix[7] = 0.0f; |
| 273 | |
| 274 | projectionMatrix[8] = (right+left)/(right-left); |
| 275 | projectionMatrix[9] = (top+bottom)/(top-bottom); |
| 276 | projectionMatrix[10] = -((far_+near_)/(far_-near_)); |
| 277 | projectionMatrix[11] = -1.0f; |
| 278 | |
| 279 | projectionMatrix[12] = 0.0f; |
| 280 | projectionMatrix[13] = 0.0f; |
| 281 | projectionMatrix[14] = -((2.0f*far_*near_)/(far_-near_)); |
| 282 | projectionMatrix[15] = 0.0f; |
| 283 | } |
| 284 | |
| 285 | // Operation 0100 |
| 286 | // Polygon rasterization. |
| 287 | void hng64_state::recoverPolygonBlock(const UINT16* packet, struct polygon* polys, int* numPolys) |
| 288 | { |
| 289 | /*////////////// |
| 290 | // PACKET FORMAT |
| 291 | // [0] - 0100 ... ID |
| 292 | // [1] - ?--- ... Flags [?000 = ??? |
| 293 | // 0?00 = ??? |
| 294 | // 00?0 = ??? |
| 295 | // 000? = ???] |
| 296 | // [1] - -?-- ... Flags [?000 = ??? |
| 297 | // 0?00 = ??? |
| 298 | // 00?0 = ??? |
| 299 | // 000x = Dynamic palette bit] |
| 300 | // [1] - --?- ... Flags [?000 = ??? |
| 301 | // 0?00 = ??? |
| 302 | // 00?0 = ??? |
| 303 | // 000? = ???] |
| 304 | // [1] - ---? ... Flags [x000 = Apply lighting bit |
| 305 | // 0?00 = ??? |
| 306 | // 00?0 = ??? |
| 307 | // 000? = ???] |
| 308 | // [2] - xxxx ... offset into ROM |
| 309 | // [3] - xxxx ... offset into ROM |
| 310 | // [4] - xxxx ... Transformation matrix |
| 311 | // [5] - xxxx ... Transformation matrix |
| 312 | // [6] - xxxx ... Transformation matrix |
| 313 | // [7] - xxxx ... Transformation matrix |
| 314 | // [8] - xxxx ... Transformation matrix |
| 315 | // [9] - xxxx ... Transformation matrix |
| 316 | // [10] - xxxx ... Transformation matrix |
| 317 | // [11] - xxxx ... Transformation matrix |
| 318 | // [12] - xxxx ... Transformation matrix |
| 319 | // [13] - xxxx ... Transformation matrix |
| 320 | // [14] - xxxx ... Transformation matrix |
| 321 | // [15] - xxxx ... Transformation matrix |
| 322 | ////////////*/ |
| 323 | |
| 324 | |
| 325 | |
| 326 | float objectMatrix[16]; |
| 327 | setIdentity(objectMatrix); |
| 328 | ///////////////// |
| 329 | // HEADER INFO // |
| 330 | ///////////////// |
| 331 | // THE OBJECT TRANSFORMATION MATRIX |
| 332 | objectMatrix[8] = uToF(packet[7]); |
| 333 | objectMatrix[4] = uToF(packet[8]); |
| 334 | objectMatrix[0] = uToF(packet[9]); |
| 335 | objectMatrix[3] = 0.0f; |
| 336 | |
| 337 | objectMatrix[9] = uToF(packet[10]); |
| 338 | objectMatrix[5] = uToF(packet[11]); |
| 339 | objectMatrix[1] = uToF(packet[12]); |
| 340 | objectMatrix[7] = 0.0f; |
| 341 | |
| 342 | objectMatrix[10] = uToF(packet[13]); |
| 343 | objectMatrix[6 ] = uToF(packet[14]); |
| 344 | objectMatrix[2 ] = uToF(packet[15]); |
| 345 | objectMatrix[11] = 0.0f; |
| 346 | |
| 347 | objectMatrix[12] = uToF(packet[4]); |
| 348 | objectMatrix[13] = uToF(packet[5]); |
| 349 | objectMatrix[14] = uToF(packet[6]); |
| 350 | objectMatrix[15] = 1.0f; |
| 351 | |
| 352 | UINT32 size[4]; |
| 353 | UINT32 address[4]; |
| 354 | UINT32 megaOffset; |
| 355 | float eyeCoords[4]; // ObjectCoords transformed by the modelViewMatrix |
| 356 | // float clipCoords[4]; // EyeCoords transformed by the projectionMatrix |
| 357 | float ndCoords[4]; // Normalized device coordinates/clipCoordinates (x/w, y/w, z/w) |
| 358 | float windowCoords[4]; // Mapped ndCoordinates to screen space |
| 359 | float cullRay[4]; |
| 360 | struct polygon lastPoly = { 0 }; |
| 361 | const rectangle &visarea = m_screen->visible_area(); |
| 362 | |
| 363 | |
| 364 | ////////////////////////////////////////////////////////// |
| 365 | // EXTRACT DATA FROM THE ADDRESS POINTED TO IN THE FILE // |
| 366 | ////////////////////////////////////////////////////////// |
| 367 | /*////////////////////////////////////////////// |
| 368 | // DIRECTLY-POINTED-TO FORMAT (7 words x 3 ROMs) |
| 369 | // [0] - lower word of sub-address 1 |
| 370 | // [1] - lower word of sub-address 2 |
| 371 | // [2] - upper word of all sub-addresses |
| 372 | // [3] - lower word of sub-address 3 |
| 373 | // [4] - lower word of sub-address 4 |
| 374 | // [5] - ???? always 0 ???? |
| 375 | // [6] - number of chunks in sub-address 1 block |
| 376 | // [7] - number of chunks in sub-address 2 block |
| 377 | // [8] - ???? always 0 ???? |
| 378 | // [9] - number of chunks in sub-address 3 block |
| 379 | // [10] - number of chunks in sub-address 4 block |
| 380 | // [11] - ? definitely used. |
| 381 | // [12] - ? definitely used. |
| 382 | // [13] - ? definitely used. |
| 383 | // [14] - ? definitely used. |
| 384 | // [15] - ???? always 0 ???? |
| 385 | // [16] - ???? always 0 ???? |
| 386 | // [17] - ???? always 0 ???? |
| 387 | // [18] - ???? always 0 ???? |
| 388 | // [19] - ???? always 0 ???? |
| 389 | // [20] - ???? always 0 ???? |
| 390 | //////////////////////////////////////////////*/ |
| 391 | |
| 392 | // 3d ROM Offset |
| 393 | UINT16* threeDRoms = m_vertsrom; |
| 394 | UINT32 threeDOffset = (((UINT32)packet[2]) << 16) | ((UINT32)packet[3]); |
| 395 | UINT16* threeDPointer = &threeDRoms[threeDOffset * 3]; |
| 396 | |
| 397 | if (threeDOffset >= m_vertsrom_size) |
| 398 | { |
| 399 | printf("Strange geometry packet: (ignoring)\n"); |
| 400 | printPacket(packet, 1); |
| 401 | return; |
| 402 | } |
| 403 | |
| 404 | #if 0 |
| 405 | // Debug - ajg |
| 406 | printf("%08x : ", threeDOffset*3*2); |
| 407 | for (int k = 0; k < 7*3; k++) |
| 408 | { |
| 409 | printf("%04x ", threeDPointer[k]); |
| 410 | if ((k % 3) == 2) printf(" "); |
| 411 | } |
| 412 | printf("\n"); |
| 413 | #endif |
| 414 | |
| 415 | // There are 4 hunks per address. |
| 416 | address[0] = threeDPointer[0]; |
| 417 | address[1] = threeDPointer[1]; |
| 418 | megaOffset = threeDPointer[2]; |
| 419 | |
| 420 | address[2] = threeDPointer[3]; |
| 421 | address[3] = threeDPointer[4]; |
| 422 | if (threeDPointer[5] != 0x0000) printf("ZOMG! 3dPointer[5] is non-zero!\n"); |
| 423 | |
| 424 | size[0] = threeDPointer[6]; |
| 425 | size[1] = threeDPointer[7]; |
| 426 | if (threeDPointer[8] != 0x0000) printf("ZOMG! 3dPointer[8] is non-zero!\n"); |
| 427 | |
| 428 | size[2] = threeDPointer[9]; |
| 429 | size[3] = threeDPointer[10]; |
| 430 | /* ???? [11]; Used. */ |
| 431 | |
| 432 | /* ???? [12]; Used. */ |
| 433 | /* ???? [13]; Used. */ |
| 434 | /* ???? [14]; Used. */ |
| 435 | |
| 436 | if (threeDPointer[15] != 0x0000) printf("ZOMG! 3dPointer[15] is non-zero!\n"); |
| 437 | if (threeDPointer[16] != 0x0000) printf("ZOMG! 3dPointer[16] is non-zero!\n"); |
| 438 | if (threeDPointer[17] != 0x0000) printf("ZOMG! 3dPointer[17] is non-zero!\n"); |
| 439 | |
| 440 | if (threeDPointer[18] != 0x0000) printf("ZOMG! 3dPointer[18] is non-zero!\n"); |
| 441 | if (threeDPointer[19] != 0x0000) printf("ZOMG! 3dPointer[19] is non-zero!\n"); |
| 442 | if (threeDPointer[20] != 0x0000) printf("ZOMG! 3dPointer[20] is non-zero!\n"); |
| 443 | |
| 444 | /* Concatenate the megaOffset with the addresses */ |
| 445 | address[0] |= (megaOffset << 16); |
| 446 | address[1] |= (megaOffset << 16); |
| 447 | address[2] |= (megaOffset << 16); |
| 448 | address[3] |= (megaOffset << 16); |
| 449 | |
| 450 | // Debug - ajg |
| 451 | //UINT32 tdColor = 0xff000000; |
| 452 | //if (threeDPointer[14] & 0x0002) tdColor |= 0x00ff0000; |
| 453 | //if (threeDPointer[14] & 0x0001) tdColor |= 0x0000ff00; |
| 454 | //if (threeDPointer[14] & 0x0000) tdColor |= 0x000000ff; |
| 455 | |
| 456 | /* For all 4 polygon chunks */ |
| 457 | for (int k = 0; k < 4; k++) |
| 458 | { |
| 459 | UINT16* chunkOffset = &threeDRoms[address[k] * 3]; |
| 460 | for (int l = 0; l < size[k]; l++) |
| 461 | { |
| 462 | //////////////////////////////////////////// |
| 463 | // GATHER A SINGLE TRIANGLE'S INFORMATION // |
| 464 | //////////////////////////////////////////// |
| 465 | // SINGLE POLY CHUNK FORMAT |
| 466 | // [0] ??-- - ??? |
| 467 | // [0] --xx - Chunk type |
| 468 | // |
| 469 | // [1] ?--- - Flags [?000 = ??? |
| 470 | // 0?00 = ??? |
| 471 | // 00?0 = ??? |
| 472 | // 000x = low-res texture flag] |
| 473 | // [1] -x-- - Explicit 0x80 palette index. |
| 474 | // [1] --x- - Explicit 0x08 palette index. |
| 475 | // [1] ---x - Texture page (1024x1024 bytes) |
| 476 | // |
| 477 | // [2] x--- - Texture Flags [x000 = Uses 4x4 sub-texture pages? |
| 478 | // 0?00 = ??? - differen sub-page size? SNK logo in RoadEdge. Always on in bbust2. |
| 479 | // 00xx = Horizontal sub-texture page index] |
| 480 | // [2] -?-- - ??? - barely visible (thus far) in roadedge |
| 481 | // [2] --x- - Texture Flags [?000 = ??? |
| 482 | // 0xx0 = Vertical sub-texture page index. |
| 483 | // 000? = ???] |
| 484 | // [2] ---? - ??? |
| 485 | ////////////////////////// |
| 486 | UINT8 chunkType = chunkOffset[0] & 0x00ff; |
| 487 | |
| 488 | // Debug - ajg |
| 489 | if (chunkOffset[0] & 0xff00) |
| 490 | { |
| 491 | printf("Weird! The top byte of the chunkType has a value %04x!\n", chunkOffset[0]); |
| 492 | continue; |
| 493 | } |
| 494 | |
| 495 | // Debug - Colors polygons with certain flags bright blue! ajg |
| 496 | polys[*numPolys].debugColor = 0; |
| 497 | //polys[*numPolys].debugColor = tdColor; |
| 498 | |
| 499 | // Debug - ajg |
| 500 | //printf("%d (%08x) : %04x %04x %04x\n", k, address[k]*3*2, chunkOffset[0], chunkOffset[1], chunkOffset[2]); |
| 501 | //break; |
| 502 | |
| 503 | // TEXTURE |
| 504 | /* There may be more than just high & low res texture types, so I'm keeping texType as a UINT8. */ |
| 505 | if (chunkOffset[1] & 0x1000) polys[*numPolys].texType = 0x1; |
| 506 | else polys[*numPolys].texType = 0x0; |
| 507 | |
| 508 | polys[*numPolys].texPageSmall = (chunkOffset[2] & 0x8000) >> 15; // Just a guess. |
| 509 | polys[*numPolys].texPageHorizOffset = (chunkOffset[2] & 0x3000) >> 12; |
| 510 | polys[*numPolys].texPageVertOffset = (chunkOffset[2] & 0x0060) >> 5; |
| 511 | |
| 512 | polys[*numPolys].texIndex = chunkOffset[1] & 0x000f; |
| 513 | |
| 514 | |
| 515 | // PALETTE |
| 516 | polys[*numPolys].palOffset = 0; |
| 517 | polys[*numPolys].palPageSize = 0x100; |
| 518 | |
| 519 | /* FIXME: This isn't correct. |
| 520 | Buriki & Xrally need this line. Roads Edge needs it removed. |
| 521 | So instead we're looking for a bit that is on for XRally & Buriki, but noone else. */ |
| 522 | if (m_3dregs[0x00/4] & 0x2000) |
| 523 | { |
| 524 | if (strcmp(machine().basename(), "roadedge")) |
| 525 | polys[*numPolys].palOffset += 0x800; |
| 526 | } |
| 527 | |
| 528 | //UINT16 explicitPaletteValue0 = ((chunkOffset[?] & 0x????) >> ?) * 0x800; |
| 529 | UINT16 explicitPaletteValue1 = ((chunkOffset[1] & 0x0f00) >> 8) * 0x080; |
| 530 | UINT16 explicitPaletteValue2 = ((chunkOffset[1] & 0x00f0) >> 4) * 0x008; |
| 531 | |
| 532 | // The presence of 0x00f0 *probably* sets 0x10-sized palette addressing. |
| 533 | if (explicitPaletteValue2) polys[*numPolys].palPageSize = 0x10; |
| 534 | |
| 535 | // Apply the dynamic palette offset if its flag is set, otherwise stick with the fixed one |
| 536 | if ((packet[1] & 0x0100)) |
| 537 | { |
| 538 | explicitPaletteValue1 = m_paletteState3d * 0x80; |
| 539 | explicitPaletteValue2 = 0; // This is probably hiding somewhere in operation 0011 |
| 540 | } |
| 541 | |
| 542 | polys[*numPolys].palOffset += (explicitPaletteValue1 + explicitPaletteValue2); |
| 543 | |
| 544 | |
| 545 | |
| 546 | UINT8 chunkLength = 0; |
| 547 | switch(chunkType) |
| 548 | { |
| 549 | /*///////////////////////// |
| 550 | // CHUNK TYPE BITS - These are very likely incorrect. |
| 551 | // x--- ---- - 1 = Has only 1 vertex (part of a triangle fan/strip) |
| 552 | // -x-- ---- - |
| 553 | // --x- ---- - |
| 554 | // ---x ---- - |
| 555 | // ---- x--- - |
| 556 | // ---- -x-- - 1 = Has per-vert UVs |
| 557 | // ---- --x- - |
| 558 | // ---- ---x - 1 = Has per-vert normals |
| 559 | /////////////////////////*/ |
| 560 | |
| 561 | // 33 word chunk, 3 vertices, per-vertex UVs & normals, per-face normal |
| 562 | case 0x05: // 0000 0101 |
| 563 | case 0x0f: // 0000 1111 |
| 564 | for (int m = 0; m < 3; m++) |
| 565 | { |
| 566 | polys[*numPolys].vert[m].worldCoords[0] = uToF(chunkOffset[3 + (9*m)]); |
| 567 | polys[*numPolys].vert[m].worldCoords[1] = uToF(chunkOffset[4 + (9*m)]); |
| 568 | polys[*numPolys].vert[m].worldCoords[2] = uToF(chunkOffset[5 + (9*m)]); |
| 569 | polys[*numPolys].vert[m].worldCoords[3] = 1.0f; |
| 570 | polys[*numPolys].n = 3; |
| 571 | |
| 572 | // chunkOffset[6 + (9*m)] is almost always 0080, but it's 0070 for the translucent globe in fatfurwa player select |
| 573 | polys[*numPolys].vert[m].texCoords[0] = uToF(chunkOffset[7 + (9*m)]); |
| 574 | polys[*numPolys].vert[m].texCoords[1] = uToF(chunkOffset[8 + (9*m)]); |
| 575 | polys[*numPolys].vert[m].texCoords[2] = 0.0f; |
| 576 | polys[*numPolys].vert[m].texCoords[3] = 1.0f; |
| 577 | |
| 578 | polys[*numPolys].vert[m].normal[0] = uToF(chunkOffset[9 + (9*m)]); |
| 579 | polys[*numPolys].vert[m].normal[1] = uToF(chunkOffset[10 + (9*m)] ); |
| 580 | polys[*numPolys].vert[m].normal[2] = uToF(chunkOffset[11 + (9*m)] ); |
| 581 | polys[*numPolys].vert[m].normal[3] = 0.0f; |
| 582 | } |
| 583 | |
| 584 | // Redundantly called, but it works... |
| 585 | polys[*numPolys].faceNormal[0] = uToF(chunkOffset[30]); |
| 586 | polys[*numPolys].faceNormal[1] = uToF(chunkOffset[31]); |
| 587 | polys[*numPolys].faceNormal[2] = uToF(chunkOffset[32]); |
| 588 | polys[*numPolys].faceNormal[3] = 0.0f; |
| 589 | |
| 590 | chunkLength = 33; |
| 591 | break; |
| 592 | |
| 593 | |
| 594 | // 24 word chunk, 3 vertices, per-vertex UVs |
| 595 | case 0x04: // 0000 0100 |
| 596 | case 0x0e: // 0000 1110 |
| 597 | case 0x24: // 0010 0100 |
| 598 | case 0x2e: // 0010 1110 |
| 599 | for (int m = 0; m < 3; m++) |
| 600 | { |
| 601 | polys[*numPolys].vert[m].worldCoords[0] = uToF(chunkOffset[3 + (6*m)]); |
| 602 | polys[*numPolys].vert[m].worldCoords[1] = uToF(chunkOffset[4 + (6*m)]); |
| 603 | polys[*numPolys].vert[m].worldCoords[2] = uToF(chunkOffset[5 + (6*m)]); |
| 604 | polys[*numPolys].vert[m].worldCoords[3] = 1.0f; |
| 605 | polys[*numPolys].n = 3; |
| 606 | |
| 607 | // chunkOffset[6 + (6*m)] is almost always 0080, but it's 0070 for the translucent globe in fatfurwa player select |
| 608 | polys[*numPolys].vert[m].texCoords[0] = uToF(chunkOffset[7 + (6*m)]); |
| 609 | polys[*numPolys].vert[m].texCoords[1] = uToF(chunkOffset[8 + (6*m)]); |
| 610 | polys[*numPolys].vert[m].texCoords[2] = 0.0f; |
| 611 | polys[*numPolys].vert[m].texCoords[3] = 1.0f; |
| 612 | |
| 613 | polys[*numPolys].vert[m].normal[0] = uToF(chunkOffset[21]); |
| 614 | polys[*numPolys].vert[m].normal[1] = uToF(chunkOffset[22]); |
| 615 | polys[*numPolys].vert[m].normal[2] = uToF(chunkOffset[23]); |
| 616 | polys[*numPolys].vert[m].normal[3] = 0.0f; |
| 617 | } |
| 618 | |
| 619 | // Redundantly called, but it works... |
| 620 | polys[*numPolys].faceNormal[0] = polys[*numPolys].vert[2].normal[0]; |
| 621 | polys[*numPolys].faceNormal[1] = polys[*numPolys].vert[2].normal[1]; |
| 622 | polys[*numPolys].faceNormal[2] = polys[*numPolys].vert[2].normal[2]; |
| 623 | polys[*numPolys].faceNormal[3] = 0.0f; |
| 624 | |
| 625 | chunkLength = 24; |
| 626 | break; |
| 627 | |
| 628 | |
| 629 | // 15 word chunk, 1 vertex, per-vertex UVs & normals, face normal |
| 630 | case 0x87: // 1000 0111 |
| 631 | case 0x97: // 1001 0111 |
| 632 | case 0xd7: // 1101 0111 |
| 633 | case 0xc7: // 1100 0111 |
| 634 | // Copy over the proper vertices from the previous triangle... |
| 635 | memcpy(&polys[*numPolys].vert[1], &lastPoly.vert[0], sizeof(struct polyVert)); |
| 636 | memcpy(&polys[*numPolys].vert[2], &lastPoly.vert[2], sizeof(struct polyVert)); |
| 637 | |
| 638 | // Fill in the appropriate data... |
| 639 | polys[*numPolys].vert[0].worldCoords[0] = uToF(chunkOffset[3]); |
| 640 | polys[*numPolys].vert[0].worldCoords[1] = uToF(chunkOffset[4]); |
| 641 | polys[*numPolys].vert[0].worldCoords[2] = uToF(chunkOffset[5]); |
| 642 | polys[*numPolys].vert[0].worldCoords[3] = 1.0f; |
| 643 | polys[*numPolys].n = 3; |
| 644 | |
| 645 | // chunkOffset[6] is almost always 0080, but it's 0070 for the translucent globe in fatfurwa player select |
| 646 | polys[*numPolys].vert[0].texCoords[0] = uToF(chunkOffset[7]); |
| 647 | polys[*numPolys].vert[0].texCoords[1] = uToF(chunkOffset[8]); |
| 648 | polys[*numPolys].vert[0].texCoords[2] = 0.0f; |
| 649 | polys[*numPolys].vert[0].texCoords[3] = 1.0f; |
| 650 | |
| 651 | polys[*numPolys].vert[0].normal[0] = uToF(chunkOffset[9]); |
| 652 | polys[*numPolys].vert[0].normal[1] = uToF(chunkOffset[10]); |
| 653 | polys[*numPolys].vert[0].normal[2] = uToF(chunkOffset[11]); |
| 654 | polys[*numPolys].vert[0].normal[3] = 0.0f; |
| 655 | |
| 656 | polys[*numPolys].faceNormal[0] = uToF(chunkOffset[12]); |
| 657 | polys[*numPolys].faceNormal[1] = uToF(chunkOffset[13]); |
| 658 | polys[*numPolys].faceNormal[2] = uToF(chunkOffset[14]); |
| 659 | polys[*numPolys].faceNormal[3] = 0.0f; |
| 660 | |
| 661 | chunkLength = 15; |
| 662 | break; |
| 663 | |
| 664 | |
| 665 | // 12 word chunk, 1 vertex, per-vertex UVs |
| 666 | case 0x86: // 1000 0110 |
| 667 | case 0x96: // 1001 0110 |
| 668 | case 0xb6: // 1011 0110 |
| 669 | case 0xc6: // 1100 0110 |
| 670 | case 0xd6: // 1101 0110 |
| 671 | // Copy over the proper vertices from the previous triangle... |
| 672 | memcpy(&polys[*numPolys].vert[1], &lastPoly.vert[0], sizeof(struct polyVert)); |
| 673 | memcpy(&polys[*numPolys].vert[2], &lastPoly.vert[2], sizeof(struct polyVert)); |
| 674 | |
| 675 | polys[*numPolys].vert[0].worldCoords[0] = uToF(chunkOffset[3]); |
| 676 | polys[*numPolys].vert[0].worldCoords[1] = uToF(chunkOffset[4]); |
| 677 | polys[*numPolys].vert[0].worldCoords[2] = uToF(chunkOffset[5]); |
| 678 | polys[*numPolys].vert[0].worldCoords[3] = 1.0f; |
| 679 | polys[*numPolys].n = 3; |
| 680 | |
| 681 | // chunkOffset[6] is almost always 0080, but it's 0070 for the translucent globe in fatfurwa player select |
| 682 | polys[*numPolys].vert[0].texCoords[0] = uToF(chunkOffset[7]); |
| 683 | polys[*numPolys].vert[0].texCoords[1] = uToF(chunkOffset[8]); |
| 684 | polys[*numPolys].vert[0].texCoords[2] = 0.0f; |
| 685 | polys[*numPolys].vert[0].texCoords[3] = 1.0f; |
| 686 | |
| 687 | // This normal could be right, but I'm not entirely sure - there is no normal in the 18 bytes! |
| 688 | polys[*numPolys].vert[0].normal[0] = lastPoly.faceNormal[0]; |
| 689 | polys[*numPolys].vert[0].normal[1] = lastPoly.faceNormal[1]; |
| 690 | polys[*numPolys].vert[0].normal[2] = lastPoly.faceNormal[2]; |
| 691 | polys[*numPolys].vert[0].normal[3] = lastPoly.faceNormal[3]; |
| 692 | |
| 693 | polys[*numPolys].faceNormal[0] = lastPoly.faceNormal[0]; |
| 694 | polys[*numPolys].faceNormal[1] = lastPoly.faceNormal[1]; |
| 695 | polys[*numPolys].faceNormal[2] = lastPoly.faceNormal[2]; |
| 696 | polys[*numPolys].faceNormal[3] = lastPoly.faceNormal[3]; |
| 697 | |
| 698 | // TODO: I'm not reading 3 necessary words here (maybe face normal) !!! |
| 699 | |
| 700 | #if 0 |
| 701 | // DEBUG |
| 702 | printf("0x?6 : %08x (%d/%d)\n", address[k]*3*2, l, size[k]-1); |
| 703 | for (int m = 0; m < 13; m++) |
| 704 | printf("%04x ", chunkOffset[m]); |
| 705 | printf("\n"); |
| 706 | |
| 707 | for (int m = 0; m < 13; m++) |
| 708 | printf("%3.4f ", uToF(chunkOffset[m])); |
| 709 | printf("\n\n"); |
| 710 | #endif |
| 711 | |
| 712 | chunkLength = 12; |
| 713 | break; |
| 714 | |
| 715 | default: |
| 716 | printf("UNKNOWN geometry CHUNK TYPE : %02x\n", chunkType); |
| 717 | chunkLength = 0; |
| 718 | break; |
| 719 | } |
| 720 | |
| 721 | polys[*numPolys].visible = 1; |
| 722 | |
| 723 | // Backup the last polygon (for triangle fans [strips?]) |
| 724 | memcpy(&lastPoly, &polys[*numPolys], sizeof(struct polygon)); |
| 725 | |
| 726 | |
| 727 | //////////////////////////////////// |
| 728 | // Project and clip // |
| 729 | //////////////////////////////////// |
| 730 | // Perform the world transformations... |
| 731 | // !! Can eliminate this step with a matrix stack (maybe necessary?) !! |
| 732 | setIdentity(m_modelViewMatrix); |
| 733 | if (m_mcu_type != SAMSHO_MCU) |
| 734 | { |
| 735 | // The sams64 games transform the geometry in front of a stationary camera. |
| 736 | // This is fine in sams64_2, since it never calls the 'camera transformation' function |
| 737 | // (thus using the identity matrix for this transform), but sams64 calls the |
| 738 | // camera transformation function with rotation values. |
| 739 | // It remains to be seen what those might do... |
| 740 | matmul4(m_modelViewMatrix, m_modelViewMatrix, m_cameraMatrix); |
| 741 | } |
| 742 | matmul4(m_modelViewMatrix, m_modelViewMatrix, objectMatrix); |
| 743 | |
| 744 | // LIGHTING |
| 745 | if (packet[1] & 0x0008 && m_lightStrength > 0.0f) |
| 746 | { |
| 747 | for (int v = 0; v < 3; v++) |
| 748 | { |
| 749 | float transformedNormal[4]; |
| 750 | vecmatmul4(transformedNormal, objectMatrix, polys[*numPolys].vert[v].normal); |
| 751 | normalize(transformedNormal); |
| 752 | normalize(m_lightVector); |
| 753 | |
| 754 | float intensity = vecDotProduct(transformedNormal, m_lightVector) * -1.0f; |
| 755 | intensity = (intensity <= 0.0f) ? (0.0f) : (intensity); |
| 756 | intensity *= m_lightStrength * 128.0f; // Turns 0x0100 into 1.0 |
| 757 | intensity *= 128.0; // Maps intensity to the range [0.0, 2.0] |
| 758 | if (intensity >= 255.0f) intensity = 255.0f; |
| 759 | |
| 760 | polys[*numPolys].vert[v].light[0] = intensity; |
| 761 | polys[*numPolys].vert[v].light[1] = intensity; |
| 762 | polys[*numPolys].vert[v].light[2] = intensity; |
| 763 | } |
| 764 | } |
| 765 | else |
| 766 | { |
| 767 | // Just clear out the light values |
| 768 | for (int v = 0; v < 3; v++) |
| 769 | { |
| 770 | polys[*numPolys].vert[v].light[0] = 0; |
| 771 | polys[*numPolys].vert[v].light[1] = 0; |
| 772 | polys[*numPolys].vert[v].light[2] = 0; |
| 773 | } |
| 774 | } |
| 775 | |
| 776 | |
| 777 | // BACKFACE CULL // |
| 778 | // EMPIRICAL EVIDENCE SEEMS TO SHOW THE HNG64 HARDWARE DOES NOT BACKFACE CULL // |
| 779 | #if 0 |
| 780 | float cullRay[4]; |
| 781 | float cullNorm[4]; |
| 782 | |
| 783 | // Cast a ray out of the camera towards the polygon's point in eyespace. |
| 784 | vecmatmul4(cullRay, modelViewMatrix, polys[*numPolys].vert[0].worldCoords); |
| 785 | normalize(cullRay); |
| 786 | // Dot product that with the normal to see if you're negative... |
| 787 | vecmatmul4(cullNorm, modelViewMatrix, polys[*numPolys].faceNormal); |
| 788 | |
| 789 | float result = vecDotProduct(cullRay, cullNorm); |
| 790 | |
| 791 | if (result < 0.0f) |
| 792 | polys[*numPolys].visible = 1; |
| 793 | else |
| 794 | polys[*numPolys].visible = 0; |
| 795 | #endif |
| 796 | |
| 797 | |
| 798 | // BEHIND-THE-CAMERA CULL // |
| 799 | vecmatmul4(cullRay, m_modelViewMatrix, polys[*numPolys].vert[0].worldCoords); |
| 800 | if (cullRay[2] > 0.0f) // Camera is pointing down -Z |
| 801 | { |
| 802 | polys[*numPolys].visible = 0; |
| 803 | } |
| 804 | |
| 805 | |
| 806 | // TRANSFORM THE TRIANGLE INTO HOMOGENEOUS SCREEN SPACE // |
| 807 | if (polys[*numPolys].visible) |
| 808 | { |
| 809 | for (int m = 0; m < polys[*numPolys].n; m++) |
| 810 | { |
| 811 | // Transform and project the vertex into pre-divided homogeneous coordinates... |
| 812 | vecmatmul4(eyeCoords, m_modelViewMatrix, polys[*numPolys].vert[m].worldCoords); |
| 813 | vecmatmul4(polys[*numPolys].vert[m].clipCoords, m_projectionMatrix, eyeCoords); |
| 814 | } |
| 815 | |
| 816 | if (polys[*numPolys].visible) |
| 817 | { |
| 818 | // Clip the triangles to the view frustum... |
| 819 | performFrustumClip(&polys[*numPolys]); |
| 820 | |
| 821 | for (int m = 0; m < polys[*numPolys].n; m++) |
| 822 | { |
| 823 | // Convert into normalized device coordinates... |
| 824 | ndCoords[0] = polys[*numPolys].vert[m].clipCoords[0] / polys[*numPolys].vert[m].clipCoords[3]; |
| 825 | ndCoords[1] = polys[*numPolys].vert[m].clipCoords[1] / polys[*numPolys].vert[m].clipCoords[3]; |
| 826 | ndCoords[2] = polys[*numPolys].vert[m].clipCoords[2] / polys[*numPolys].vert[m].clipCoords[3]; |
| 827 | ndCoords[3] = polys[*numPolys].vert[m].clipCoords[3]; |
| 828 | |
| 829 | // Final pixel values are garnered here : |
| 830 | windowCoords[0] = (ndCoords[0]+1.0f) * ((float)(visarea.max_x) / 2.0f) + 0.0f; |
| 831 | windowCoords[1] = (ndCoords[1]+1.0f) * ((float)(visarea.max_y) / 2.0f) + 0.0f; |
| 832 | windowCoords[2] = (ndCoords[2]+1.0f) * 0.5f; |
| 833 | |
| 834 | windowCoords[1] = (float)visarea.max_y - windowCoords[1]; // Flip Y |
| 835 | |
| 836 | // Store the points in a list for later use... |
| 837 | polys[*numPolys].vert[m].clipCoords[0] = windowCoords[0]; |
| 838 | polys[*numPolys].vert[m].clipCoords[1] = windowCoords[1]; |
| 839 | polys[*numPolys].vert[m].clipCoords[2] = windowCoords[2]; |
| 840 | polys[*numPolys].vert[m].clipCoords[3] = ndCoords[3]; |
| 841 | } |
| 842 | } |
| 843 | } |
| 844 | |
| 845 | // Advance to the next polygon chunk... |
| 846 | chunkOffset += chunkLength; |
| 847 | |
| 848 | (*numPolys)++; |
| 849 | } |
| 850 | } |
| 851 | } |
| 852 | |
| 853 | void hng64_state::hng64_command3d(const UINT16* packet) |
| 854 | { |
| 855 | |
| 856 | /* A temporary place to put some polygons. This will optimize away if the compiler's any good. */ |
| 857 | int numPolys = 0; |
| 858 | dynamic_array<polygon> polys(1024*5); |
| 859 | |
| 860 | //printf("packet type : %04x %04x|%04x %04x|%04x %04x|%04x %04x | %04x %04x %04x %04x %04x %04x %04x %04x\n", packet[0],packet[1],packet[2],packet[3],packet[4],packet[5],packet[6],packet[7], packet[8], packet[9], packet[10], packet[11], packet[12], packet[13], packet[14], packet[15]); |
| 861 | |
| 862 | switch (packet[0]) |
| 863 | { |
| 864 | case 0x0000: // Appears to be a NOP. |
| 865 | break; |
| 866 | |
| 867 | case 0x0001: // Camera transformation. |
| 868 | setCameraTransformation(packet); |
| 869 | break; |
| 870 | |
| 871 | case 0x0010: // Lighting information. |
| 872 | //if (packet[9]) printPacket(packet, 1); |
| 873 | setLighting(packet); |
| 874 | break; |
| 875 | |
| 876 | case 0x0011: // Palette / Model flags? |
| 877 | //printPacket(packet, 1); printf("\n"); |
| 878 | set3dFlags(packet); |
| 879 | break; |
| 880 | |
| 881 | case 0x0012: // Projection Matrix |
| 882 | //printPacket(packet, 1); |
| 883 | setCameraProjectionMatrix(packet); |
| 884 | break; |
| 885 | |
| 886 | case 0x0100: |
| 887 | case 0x0101: // Geometry with full transformations |
| 888 | // HACK. Masks out a piece of geo bbust2's drawShaded() crashes on. |
| 889 | if (packet[2] == 0x0003 && packet[3] == 0x8f37 && m_mcu_type == SHOOT_MCU) |
| 890 | break; |
| 891 | |
| 892 | recoverPolygonBlock( packet, polys, &numPolys); |
| 893 | break; |
| 894 | |
| 895 | case 0x0102: // Geometry with only translation |
| 896 | // HACK. Give up on strange calls to 0102. |
| 897 | if (packet[8] != 0x0102) |
| 898 | { |
| 899 | // It appears as though packet[7] might hold the magic # |
| 900 | // Almost looks like there is a chain mode for these guys. Same for 0101? |
| 901 | // printf("WARNING: "); printPacket(packet, 1); |
| 902 | break; |
| 903 | } |
| 904 | |
| 905 | // Split the packet and call recoverPolygonBlock on each half. |
| 906 | UINT16 miniPacket[16]; |
| 907 | memset(miniPacket, 0, sizeof(UINT16)*16); |
| 908 | for (int i = 0; i < 7; i++) miniPacket[i] = packet[i]; |
| 909 | miniPacket[7] = 0x7fff; |
| 910 | miniPacket[11] = 0x7fff; |
| 911 | miniPacket[15] = 0x7fff; |
| 912 | recoverPolygonBlock( miniPacket, polys, &numPolys); |
| 913 | |
| 914 | memset(miniPacket, 0, sizeof(UINT16)*16); |
| 915 | for (int i = 0; i < 7; i++) miniPacket[i] = packet[i+8]; |
| 916 | for (int i = 0; i < 7; i++) miniPacket[i] = packet[i+8]; |
| 917 | miniPacket[7] = 0x7fff; |
| 918 | miniPacket[11] = 0x7fff; |
| 919 | miniPacket[15] = 0x7fff; |
| 920 | recoverPolygonBlock( miniPacket, polys, &numPolys); |
| 921 | break; |
| 922 | |
| 923 | case 0x1000: // Unknown: Some sort of global flags? |
| 924 | //printPacket(packet, 1); printf("\n"); |
| 925 | break; |
| 926 | |
| 927 | case 0x1001: // Unknown: Some sort of global flags (a group of 4, actually)? |
| 928 | //printPacket(packet, 1); |
| 929 | break; |
| 930 | |
| 931 | default: |
| 932 | printf("HNG64: Unknown 3d command %04x.\n", packet[0]); |
| 933 | break; |
| 934 | } |
| 935 | |
| 936 | /* If there are polygons, rasterize them into the display buffer */ |
| 937 | for (int i = 0; i < numPolys; i++) |
| 938 | { |
| 939 | if (polys[i].visible) |
| 940 | { |
| 941 | drawShaded( &polys[i]); |
| 942 | } |
| 943 | } |
| 944 | } |
| 945 | |
| 946 | void hng64_state::clear3d() |
| 947 | { |
| 948 | int i; |
| 949 | |
| 950 | const rectangle &visarea = m_screen->visible_area(); |
| 951 | |
| 952 | // Reset the buffers... |
| 953 | for (i = 0; i < (visarea.max_x)*(visarea.max_y); i++) |
| 954 | { |
| 955 | m_depthBuffer3d[i] = 100.0f; |
| 956 | m_colorBuffer3d[i] = rgb_t(0, 0, 0, 0); |
| 957 | } |
| 958 | |
| 959 | // Set some matrices to the identity... |
| 960 | setIdentity(m_projectionMatrix); |
| 961 | setIdentity(m_modelViewMatrix); |
| 962 | setIdentity(m_cameraMatrix); |
| 963 | } |
| 964 | |
| 965 | /* 3D/framebuffer video registers |
| 966 | * ------------------------------ |
| 967 | * |
| 968 | * UINT32 | Bits | Use |
| 969 | * | 3322 2222 2222 1111 1111 11 | |
| 970 | * -------+-1098-7654-3210-9876-5432-1098-7654-3210-+---------------- |
| 971 | * 0 | ---- --x- ---- ---- ---- ---- ---- ---- | Reads in Fatal Fury WA, if on then there isn't a 3d refresh (busy flag?). |
| 972 | * 0 | ---- ---x ---- ---- ---- ---- ---- ---- | set at POST/service modes, almost likely fb disable |
| 973 | * 0 | ???? ???? ???? ???? ccc? ???? ???? ???? | framebuffer color base, 0x311800 in Fatal Fury WA, 0x313800 in Buriki One |
| 974 | * 1 | | |
| 975 | * 2 | ???? ???? ???? ???? ???? ???? ???? ???? | camera / framebuffer global x/y? Actively used by Samurai Shodown 64 2 |
| 976 | * 3 | ---- --?x ---- ---- ---- ---- ---- ---- | unknown, unsetted by Buriki One and setted by Fatal Fury WA, buffering mode? |
| 977 | * 4-11 | ---- ???? ---- ???? ---- ???? ---- ???? | Table filled with 0x0? data |
| 978 | * |
| 979 | */ |
| 980 | |
| 981 | ///////////////////// |
| 982 | // 3D UTILITY CODE // |
| 983 | ///////////////////// |
| 984 | |
| 985 | /* 4x4 matrix multiplication */ |
| 986 | void hng64_state::matmul4(float *product, const float *a, const float *b ) |
| 987 | { |
| 988 | int i; |
| 989 | for (i = 0; i < 4; i++) |
| 990 | { |
| 991 | const float ai0 = a[0 + i]; |
| 992 | const float ai1 = a[4 + i]; |
| 993 | const float ai2 = a[8 + i]; |
| 994 | const float ai3 = a[12 + i]; |
| 995 | |
| 996 | product[0 + i] = ai0 * b[0 ] + ai1 * b[1 ] + ai2 * b[2 ] + ai3 * b[3 ]; |
| 997 | product[4 + i] = ai0 * b[4 ] + ai1 * b[5 ] + ai2 * b[6 ] + ai3 * b[7 ]; |
| 998 | product[8 + i] = ai0 * b[8 ] + ai1 * b[9 ] + ai2 * b[10] + ai3 * b[11]; |
| 999 | product[12 + i] = ai0 * b[12] + ai1 * b[13] + ai2 * b[14] + ai3 * b[15]; |
| 1000 | } |
| 1001 | } |
| 1002 | |
| 1003 | /* vector by 4x4 matrix multiply */ |
| 1004 | void hng64_state::vecmatmul4(float *product, const float *a, const float *b) |
| 1005 | { |
| 1006 | const float bi0 = b[0]; |
| 1007 | const float bi1 = b[1]; |
| 1008 | const float bi2 = b[2]; |
| 1009 | const float bi3 = b[3]; |
| 1010 | |
| 1011 | product[0] = bi0 * a[0] + bi1 * a[4] + bi2 * a[8 ] + bi3 * a[12]; |
| 1012 | product[1] = bi0 * a[1] + bi1 * a[5] + bi2 * a[9 ] + bi3 * a[13]; |
| 1013 | product[2] = bi0 * a[2] + bi1 * a[6] + bi2 * a[10] + bi3 * a[14]; |
| 1014 | product[3] = bi0 * a[3] + bi1 * a[7] + bi2 * a[11] + bi3 * a[15]; |
| 1015 | } |
| 1016 | |
| 1017 | float hng64_state::vecDotProduct(const float *a, const float *b) |
| 1018 | { |
| 1019 | return ((a[0]*b[0]) + (a[1]*b[1]) + (a[2]*b[2])); |
| 1020 | } |
| 1021 | |
| 1022 | void hng64_state::setIdentity(float *matrix) |
| 1023 | { |
| 1024 | int i; |
| 1025 | |
| 1026 | for (i = 0; i < 16; i++) |
| 1027 | { |
| 1028 | matrix[i] = 0.0f; |
| 1029 | } |
| 1030 | |
| 1031 | matrix[0] = matrix[5] = matrix[10] = matrix[15] = 1.0f; |
| 1032 | } |
| 1033 | |
| 1034 | float hng64_state::uToF(UINT16 input) |
| 1035 | { |
| 1036 | float retVal; |
| 1037 | retVal = (float)((INT16)input) / 32768.0f; |
| 1038 | return retVal; |
| 1039 | |
| 1040 | #if 0 |
| 1041 | if ((INT16)input < 0) |
| 1042 | retVal = (float)((INT16)input) / 32768.0f; |
| 1043 | else |
| 1044 | retVal = (float)((INT16)input) / 32767.0f; |
| 1045 | #endif |
| 1046 | } |
| 1047 | |
| 1048 | void hng64_state::normalize(float* x) |
| 1049 | { |
| 1050 | double l2 = (x[0]*x[0]) + (x[1]*x[1]) + (x[2]*x[2]); |
| 1051 | double l = sqrt(l2); |
| 1052 | |
| 1053 | x[0] = (float)(x[0] / l); |
| 1054 | x[1] = (float)(x[1] / l); |
| 1055 | x[2] = (float)(x[2] / l); |
| 1056 | } |
| 1057 | |
| 1058 | |
| 1059 | |
| 1060 | /////////////////////////// |
| 1061 | // POLYGON CLIPPING CODE // |
| 1062 | /////////////////////////// |
| 1063 | |
| 1064 | /////////////////////////////////////////////////////////////////////////////////// |
| 1065 | // The remainder of the code in this file is heavily // |
| 1066 | // influenced by, and sometimes copied verbatim from Andrew Zaferakis' SoftGL // |
| 1067 | // rasterizing system. // |
| 1068 | // // |
| 1069 | // Andrew granted permission for its use in MAME in October of 2004. // |
| 1070 | /////////////////////////////////////////////////////////////////////////////////// |
| 1071 | |
| 1072 | |
| 1073 | |
| 1074 | int hng64_state::Inside(struct polyVert *v, int plane) |
| 1075 | { |
| 1076 | switch(plane) |
| 1077 | { |
| 1078 | case HNG64_LEFT: |
| 1079 | return (v->clipCoords[0] >= -v->clipCoords[3]) ? 1 : 0; |
| 1080 | case HNG64_RIGHT: |
| 1081 | return (v->clipCoords[0] <= v->clipCoords[3]) ? 1 : 0; |
| 1082 | |
| 1083 | case HNG64_TOP: |
| 1084 | return (v->clipCoords[1] <= v->clipCoords[3]) ? 1 : 0; |
| 1085 | case HNG64_BOTTOM: |
| 1086 | return (v->clipCoords[1] >= -v->clipCoords[3]) ? 1 : 0; |
| 1087 | |
| 1088 | case HNG64_NEAR: |
| 1089 | return (v->clipCoords[2] <= v->clipCoords[3]) ? 1 : 0; |
| 1090 | case HNG64_FAR: |
| 1091 | return (v->clipCoords[2] >= -v->clipCoords[3]) ? 1 : 0; |
| 1092 | } |
| 1093 | |
| 1094 | return 0; |
| 1095 | } |
| 1096 | |
| 1097 | void hng64_state::Intersect(struct polyVert *input0, struct polyVert *input1, struct polyVert *output, int plane) |
| 1098 | { |
| 1099 | float t = 0.0f; |
| 1100 | |
| 1101 | float *Iv0 = input0->clipCoords; |
| 1102 | float *Iv1 = input1->clipCoords; |
| 1103 | float *Ov = output->clipCoords; |
| 1104 | |
| 1105 | float *It0 = input0->texCoords; |
| 1106 | float *It1 = input1->texCoords; |
| 1107 | float *Ot = output->texCoords; |
| 1108 | |
| 1109 | float *Il0 = input0->light; |
| 1110 | float *Il1 = input1->light; |
| 1111 | float *Ol = output->light; |
| 1112 | |
| 1113 | switch(plane) |
| 1114 | { |
| 1115 | case HNG64_LEFT: |
| 1116 | t = (Iv0[0]+Iv0[3]) / (-Iv1[3]+Iv0[3]-Iv1[0]+Iv0[0]); |
| 1117 | break; |
| 1118 | case HNG64_RIGHT: |
| 1119 | t = (Iv0[0]-Iv0[3]) / (Iv1[3]-Iv0[3]-Iv1[0]+Iv0[0]); |
| 1120 | break; |
| 1121 | case HNG64_TOP: |
| 1122 | t = (Iv0[1]-Iv0[3]) / (Iv1[3]-Iv0[3]-Iv1[1]+Iv0[1]); |
| 1123 | break; |
| 1124 | case HNG64_BOTTOM: |
| 1125 | t = (Iv0[1]+Iv0[3]) / (-Iv1[3]+Iv0[3]-Iv1[1]+Iv0[1]); |
| 1126 | break; |
| 1127 | case HNG64_NEAR: |
| 1128 | t = (Iv0[2]-Iv0[3]) / (Iv1[3]-Iv0[3]-Iv1[2]+Iv0[2]); |
| 1129 | break; |
| 1130 | case HNG64_FAR: |
| 1131 | t = (Iv0[2]+Iv0[3]) / (-Iv1[3]+Iv0[3]-Iv1[2]+Iv0[2]); |
| 1132 | break; |
| 1133 | } |
| 1134 | |
| 1135 | Ov[0] = Iv0[0] + (Iv1[0] - Iv0[0]) * t; |
| 1136 | Ov[1] = Iv0[1] + (Iv1[1] - Iv0[1]) * t; |
| 1137 | Ov[2] = Iv0[2] + (Iv1[2] - Iv0[2]) * t; |
| 1138 | Ov[3] = Iv0[3] + (Iv1[3] - Iv0[3]) * t; |
| 1139 | |
| 1140 | Ot[0] = It0[0] + (It1[0] - It0[0]) * t; |
| 1141 | Ot[1] = It0[1] + (It1[1] - It0[1]) * t; |
| 1142 | Ot[2] = It0[2] + (It1[2] - It0[2]) * t; |
| 1143 | Ot[3] = It0[3] + (It1[3] - It0[3]) * t; |
| 1144 | |
| 1145 | Ol[0] = Il0[0] + (Il1[0] - Il0[0]) * t; |
| 1146 | Ol[1] = Il0[1] + (Il1[1] - Il0[1]) * t; |
| 1147 | Ol[2] = Il0[2] + (Il1[2] - Il0[2]) * t; |
| 1148 | } |
| 1149 | |
| 1150 | void hng64_state::performFrustumClip(struct polygon *p) |
| 1151 | { |
| 1152 | int i, j, k; |
| 1153 | ////////////////////////////////////////////////////////////////////////// |
| 1154 | // Clip against the volumes defined by the homogeneous clip coordinates // |
| 1155 | ////////////////////////////////////////////////////////////////////////// |
| 1156 | |
| 1157 | struct polygon temp; |
| 1158 | |
| 1159 | struct polyVert *v0; |
| 1160 | struct polyVert *v1; |
| 1161 | struct polyVert *tv; |
| 1162 | |
| 1163 | temp.n = 0; |
| 1164 | |
| 1165 | // Skip near and far clipping planes ? |
| 1166 | for (j = 0; j <= HNG64_BOTTOM; j++) |
| 1167 | { |
| 1168 | for (i = 0; i < p->n; i++) |
| 1169 | { |
| 1170 | k = (i+1) % p->n; // Index of next vertex |
| 1171 | |
| 1172 | v0 = &p->vert[i]; |
| 1173 | v1 = &p->vert[k]; |
| 1174 | |
| 1175 | tv = &temp.vert[temp.n]; |
| 1176 | |
| 1177 | if (Inside(v0, j) && Inside(v1, j)) // Edge is completely inside the volume... |
| 1178 | { |
| 1179 | memcpy(tv, v1, sizeof(struct polyVert)); |
| 1180 | temp.n++; |
| 1181 | } |
| 1182 | |
| 1183 | else if (Inside(v0, j) && !Inside(v1, j)) // Edge goes from in to out... |
| 1184 | { |
| 1185 | Intersect(v0, v1, tv, j); |
| 1186 | temp.n++; |
| 1187 | } |
| 1188 | |
| 1189 | else if (!Inside(v0, j) && Inside(v1, j)) // Edge goes from out to in... |
| 1190 | { |
| 1191 | Intersect(v0, v1, tv, j); |
| 1192 | memcpy(&temp.vert[temp.n+1], v1, sizeof(struct polyVert)); |
| 1193 | temp.n+=2; |
| 1194 | } |
| 1195 | } |
| 1196 | |
| 1197 | p->n = temp.n; |
| 1198 | |
| 1199 | for (i = 0; i < temp.n; i++) |
| 1200 | { |
| 1201 | memcpy(&p->vert[i], &temp.vert[i], sizeof(struct polyVert)); |
| 1202 | } |
| 1203 | |
| 1204 | temp.n = 0; |
| 1205 | } |
| 1206 | } |
| 1207 | |
| 1208 | |
| 1209 | |
| 1210 | /*********************************************************************/ |
| 1211 | /** FillSmoothTexPCHorizontalLine **/ |
| 1212 | /** Input: Color Buffer (framebuffer), depth buffer, width and **/ |
| 1213 | /** height of framebuffer, starting, and ending values **/ |
| 1214 | /** for x and y, constant y. Fills horizontally with **/ |
| 1215 | /** z,r,g,b interpolation. **/ |
| 1216 | /** **/ |
| 1217 | /** Output: none **/ |
| 1218 | /*********************************************************************/ |
| 1219 | inline void hng64_state::FillSmoothTexPCHorizontalLine( |
| 1220 | const polygonRasterOptions& prOptions, |
| 1221 | int x_start, int x_end, int y, float z_start, float z_delta, |
| 1222 | float w_start, float w_delta, float r_start, float r_delta, |
| 1223 | float g_start, float g_delta, float b_start, float b_delta, |
| 1224 | float s_start, float s_delta, float t_start, float t_delta) |
| 1225 | { |
| 1226 | float* db = &(m_depthBuffer3d[(y * m_screen->visible_area().max_x) + x_start]); |
| 1227 | UINT32* cb = &(m_colorBuffer3d[(y * m_screen->visible_area().max_x) + x_start]); |
| 1228 | |
| 1229 | UINT8 paletteEntry = 0; |
| 1230 | float t_coord, s_coord; |
| 1231 | const UINT8 *gfx = m_texturerom; |
| 1232 | const UINT8 *textureOffset = &gfx[prOptions.texIndex * 1024 * 1024]; |
| 1233 | |
| 1234 | for (; x_start <= x_end; x_start++) |
| 1235 | { |
| 1236 | if (z_start < (*db)) |
| 1237 | { |
| 1238 | // MULTIPLY BACK THROUGH BY W |
| 1239 | t_coord = t_start / w_start; |
| 1240 | s_coord = s_start / w_start; |
| 1241 | |
| 1242 | if ((prOptions.debugColor & 0xff000000) == 0x01000000) |
| 1243 | { |
| 1244 | // UV COLOR MODE |
| 1245 | *cb = rgb_t(255, (UINT8)(s_coord*255.0f), (UINT8)(t_coord*255.0f), (UINT8)(0)); |
| 1246 | *db = z_start; |
| 1247 | } |
| 1248 | else if ((prOptions.debugColor & 0xff000000) == 0x02000000) |
| 1249 | { |
| 1250 | // Lit |
| 1251 | *cb = rgb_t(255, (UINT8)(r_start/w_start), (UINT8)(g_start/w_start), (UINT8)(b_start/w_start)); |
| 1252 | *db = z_start; |
| 1253 | } |
| 1254 | else if ((prOptions.debugColor & 0xff000000) == 0xff000000) |
| 1255 | { |
| 1256 | // DEBUG COLOR MODE |
| 1257 | *cb = prOptions.debugColor; |
| 1258 | *db = z_start; |
| 1259 | } |
| 1260 | else |
| 1261 | { |
| 1262 | float textureS = 0.0f; |
| 1263 | float textureT = 0.0f; |
| 1264 | |
| 1265 | // Standard & Half-Res textures |
| 1266 | if (prOptions.texType == 0x0) |
| 1267 | { |
| 1268 | textureS = s_coord * 1024.0f; |
| 1269 | textureT = t_coord * 1024.0f; |
| 1270 | } |
| 1271 | else if (prOptions.texType == 0x1) |
| 1272 | { |
| 1273 | textureS = s_coord * 512.0f; |
| 1274 | textureT = t_coord * 512.0f; |
| 1275 | } |
| 1276 | |
| 1277 | // Small-Page textures |
| 1278 | if (prOptions.texPageSmall) |
| 1279 | { |
| 1280 | textureT = fmod(textureT, 256.0f); |
| 1281 | textureS = fmod(textureS, 256.0f); |
| 1282 | |
| 1283 | textureT += (256.0f * prOptions.texPageHorizOffset); |
| 1284 | textureS += (256.0f * prOptions.texPageVertOffset); |
| 1285 | } |
| 1286 | paletteEntry = textureOffset[((int)textureS)*1024 + (int)textureT]; |
| 1287 | |
| 1288 | // Naieve Alpha Implementation (?) - don't draw if you're at texture index 0... |
| 1289 | if (paletteEntry != 0) |
| 1290 | { |
| 1291 | // The color out of the texture |
| 1292 | paletteEntry %= prOptions.palPageSize; |
| 1293 | rgb_t color = m_palette->pen(prOptions.palOffset + paletteEntry); |
| 1294 | |
| 1295 | // Apply the lighting |
| 1296 | float rIntensity = (r_start/w_start) / 255.0f; |
| 1297 | float gIntensity = (g_start/w_start) / 255.0f; |
| 1298 | float bIntensity = (b_start/w_start) / 255.0f; |
| 1299 | float red = color.r() * rIntensity; |
| 1300 | float green = color.g() * gIntensity; |
| 1301 | float blue = color.b() * bIntensity; |
| 1302 | |
| 1303 | // Clamp and finalize |
| 1304 | red = color.r() + red; |
| 1305 | green = color.g() + green; |
| 1306 | blue = color.b() + blue; |
| 1307 | |
| 1308 | if (red >= 255) red = 255; |
| 1309 | if (green >= 255) green = 255; |
| 1310 | if (blue >= 255) blue = 255; |
| 1311 | |
| 1312 | color = rgb_t(255, (UINT8)red, (UINT8)green, (UINT8)blue); |
| 1313 | |
| 1314 | *cb = color; |
| 1315 | *db = z_start; |
| 1316 | } |
| 1317 | } |
| 1318 | } |
| 1319 | db++; |
| 1320 | cb++; |
| 1321 | z_start += z_delta; |
| 1322 | w_start += w_delta; |
| 1323 | r_start += r_delta; |
| 1324 | g_start += g_delta; |
| 1325 | b_start += b_delta; |
| 1326 | s_start += s_delta; |
| 1327 | t_start += t_delta; |
| 1328 | } |
| 1329 | } |
| 1330 | |
| 1331 | //---------------------------------------------------------------------------- |
| 1332 | // Given 3D triangle ABC in screen space with clipped coordinates within the following |
| 1333 | // bounds: x in [0,W], y in [0,H], z in [0,1]. The origin for (x,y) is in the bottom |
| 1334 | // left corner of the pixel grid. z=0 is the near plane and z=1 is the far plane, |
| 1335 | // so lesser values are closer. The coordinates of the pixels are evenly spaced |
| 1336 | // in x and y 1 units apart starting at the bottom-left pixel with coords |
| 1337 | // (0.5,0.5). In other words, the pixel sample point is in the center of the |
| 1338 | // rectangular grid cell containing the pixel sample. The framebuffer has |
| 1339 | // dimensions width x height (WxH). The Color buffer is a 1D array (row-major |
| 1340 | // order) with 3 unsigned chars per pixel (24-bit color). The Depth buffer is |
| 1341 | // a 1D array (also row-major order) with a float value per pixel |
| 1342 | // For a pixel location (x,y) we can obtain |
| 1343 | // the Color and Depth array locations as: Color[(((int)y)*W+((int)x))*3] |
| 1344 | // (for the red value, green is offset +1, and blue is offset +2 and |
| 1345 | // Depth[((int)y)*W+((int)x)]. Fills the pixels contained in the triangle |
| 1346 | // with the global current color and the properly linearly interpolated depth |
| 1347 | // value (performs Z-buffer depth test before writing new pixel). |
| 1348 | // Pixel samples that lie inside the triangle edges are filled with |
| 1349 | // a bias towards the minimum values (samples that lie exactly on a triangle |
| 1350 | // edge are filled only for minimum x values along a horizontal span and for |
| 1351 | // minimum y values, samples lying on max values are not filled). |
| 1352 | // Per-vertex colors are RGB floating point triplets in [0.0,255.0]. The vertices |
| 1353 | // include their w-components for use in linearly interpolating perspectively |
| 1354 | // correct color (RGB) and texture-coords (st) across the face of the triangle. |
| 1355 | // A texture image of RGB floating point triplets of size TWxWH is also given. |
| 1356 | // Texture colors are normalized RGB values in [0,1]. |
| 1357 | // clamp and repeat wrapping modes : Wrapping={0,1} |
| 1358 | // nearest and bilinear filtering: Filtering={0,1} |
| 1359 | // replace and modulate application modes: Function={0,1} |
| 1360 | //--------------------------------------------------------------------------- |
| 1361 | void hng64_state::RasterizeTriangle_SMOOTH_TEX_PC( |
| 1362 | float A[4], float B[4], float C[4], |
| 1363 | float Ca[3], float Cb[3], float Cc[3], // PER-VERTEX RGB COLORS |
| 1364 | float Ta[2], float Tb[2], float Tc[2], // PER-VERTEX (S,T) TEX-COORDS |
| 1365 | const polygonRasterOptions& prOptions) |
| 1366 | { |
| 1367 | // Get our order of points by increasing y-coord |
| 1368 | float *p_min = ((A[1] <= B[1]) && (A[1] <= C[1])) ? A : ((B[1] <= A[1]) && (B[1] <= C[1])) ? B : C; |
| 1369 | float *p_max = ((A[1] >= B[1]) && (A[1] >= C[1])) ? A : ((B[1] >= A[1]) && (B[1] >= C[1])) ? B : C; |
| 1370 | float *p_mid = ((A != p_min) && (A != p_max)) ? A : ((B != p_min) && (B != p_max)) ? B : C; |
| 1371 | |
| 1372 | // Perspectively correct color interpolation, interpolate r/w, g/w, b/w, then divide by 1/w at each pixel (A[3] = 1/w) |
| 1373 | float ca[3], cb[3], cc[3]; |
| 1374 | float ta[2], tb[2], tc[2]; |
| 1375 | |
| 1376 | float *c_min; |
| 1377 | float *c_mid; |
| 1378 | float *c_max; |
| 1379 | |
| 1380 | // We must keep the tex coords straight with the point ordering |
| 1381 | float *t_min; |
| 1382 | float *t_mid; |
| 1383 | float *t_max; |
| 1384 | |
| 1385 | // Find out control points for y, this divides the triangle into upper and lower |
| 1386 | int y_min; |
| 1387 | int y_max; |
| 1388 | int y_mid; |
| 1389 | |
| 1390 | // Compute the slopes of each line, and color this is used to determine the interpolation |
| 1391 | float x1_slope; |
| 1392 | float x2_slope; |
| 1393 | float z1_slope; |
| 1394 | float z2_slope; |
| 1395 | float w1_slope; |
| 1396 | float w2_slope; |
| 1397 | float r1_slope; |
| 1398 | float r2_slope; |
| 1399 | float g1_slope; |
| 1400 | float g2_slope; |
| 1401 | float b1_slope; |
| 1402 | float b2_slope; |
| 1403 | float s1_slope; |
| 1404 | float s2_slope; |
| 1405 | float t1_slope; |
| 1406 | float t2_slope; |
| 1407 | |
| 1408 | // Compute the t values used in the equation Ax = Ax + (Bx - Ax)*t |
| 1409 | // We only need one t, because it is only used to compute the start. |
| 1410 | // Create storage for the interpolated x and z values for both lines |
| 1411 | // also for the RGB interpolation |
| 1412 | float t; |
| 1413 | float x1_interp; |
| 1414 | float z1_interp; |
| 1415 | float w1_interp; |
| 1416 | float r1_interp; |
| 1417 | float g1_interp; |
| 1418 | float b1_interp; |
| 1419 | float s1_interp; |
| 1420 | float t1_interp; |
| 1421 | |
| 1422 | float x2_interp; |
| 1423 | float z2_interp; |
| 1424 | float w2_interp; |
| 1425 | float r2_interp; |
| 1426 | float g2_interp; |
| 1427 | float b2_interp; |
| 1428 | float s2_interp; |
| 1429 | float t2_interp; |
| 1430 | |
| 1431 | // Create storage for the horizontal interpolation of z and RGB color and its starting points |
| 1432 | // This is used to fill the triangle horizontally |
| 1433 | int x_start, x_end; |
| 1434 | float z_interp_x, z_delta_x; |
| 1435 | float w_interp_x, w_delta_x; |
| 1436 | float r_interp_x, r_delta_x; |
| 1437 | float g_interp_x, g_delta_x; |
| 1438 | float b_interp_x, b_delta_x; |
| 1439 | float s_interp_x, s_delta_x; |
| 1440 | float t_interp_x, t_delta_x; |
| 1441 | |
| 1442 | ca[0] = Ca[0]; ca[1] = Ca[1]; ca[2] = Ca[2]; |
| 1443 | cb[0] = Cb[0]; cb[1] = Cb[1]; cb[2] = Cb[2]; |
| 1444 | cc[0] = Cc[0]; cc[1] = Cc[1]; cc[2] = Cc[2]; |
| 1445 | |
| 1446 | // Perspectively correct tex interpolation, interpolate s/w, t/w, then divide by 1/w at each pixel (A[3] = 1/w) |
| 1447 | ta[0] = Ta[0]; ta[1] = Ta[1]; |
| 1448 | tb[0] = Tb[0]; tb[1] = Tb[1]; |
| 1449 | tc[0] = Tc[0]; tc[1] = Tc[1]; |
| 1450 | |
| 1451 | // We must keep the colors straight with the point ordering |
| 1452 | c_min = (p_min == A) ? ca : (p_min == B) ? cb : cc; |
| 1453 | c_mid = (p_mid == A) ? ca : (p_mid == B) ? cb : cc; |
| 1454 | c_max = (p_max == A) ? ca : (p_max == B) ? cb : cc; |
| 1455 | |
| 1456 | // We must keep the tex coords straight with the point ordering |
| 1457 | t_min = (p_min == A) ? ta : (p_min == B) ? tb : tc; |
| 1458 | t_mid = (p_mid == A) ? ta : (p_mid == B) ? tb : tc; |
| 1459 | t_max = (p_max == A) ? ta : (p_max == B) ? tb : tc; |
| 1460 | |
| 1461 | // Find out control points for y, this divides the triangle into upper and lower |
| 1462 | y_min = (((int)p_min[1]) + 0.5 >= p_min[1]) ? (int)p_min[1] : ((int)p_min[1]) + 1; |
| 1463 | y_max = (((int)p_max[1]) + 0.5 < p_max[1]) ? (int)p_max[1] : ((int)p_max[1]) - 1; |
| 1464 | y_mid = (((int)p_mid[1]) + 0.5 >= p_mid[1]) ? (int)p_mid[1] : ((int)p_mid[1]) + 1; |
| 1465 | |
| 1466 | // Compute the slopes of each line, and color this is used to determine the interpolation |
| 1467 | x1_slope = (p_max[0] - p_min[0]) / (p_max[1] - p_min[1]); |
| 1468 | x2_slope = (p_mid[0] - p_min[0]) / (p_mid[1] - p_min[1]); |
| 1469 | z1_slope = (p_max[2] - p_min[2]) / (p_max[1] - p_min[1]); |
| 1470 | z2_slope = (p_mid[2] - p_min[2]) / (p_mid[1] - p_min[1]); |
| 1471 | w1_slope = (p_max[3] - p_min[3]) / (p_max[1] - p_min[1]); |
| 1472 | w2_slope = (p_mid[3] - p_min[3]) / (p_mid[1] - p_min[1]); |
| 1473 | r1_slope = (c_max[0] - c_min[0]) / (p_max[1] - p_min[1]); |
| 1474 | r2_slope = (c_mid[0] - c_min[0]) / (p_mid[1] - p_min[1]); |
| 1475 | g1_slope = (c_max[1] - c_min[1]) / (p_max[1] - p_min[1]); |
| 1476 | g2_slope = (c_mid[1] - c_min[1]) / (p_mid[1] - p_min[1]); |
| 1477 | b1_slope = (c_max[2] - c_min[2]) / (p_max[1] - p_min[1]); |
| 1478 | b2_slope = (c_mid[2] - c_min[2]) / (p_mid[1] - p_min[1]); |
| 1479 | s1_slope = (t_max[0] - t_min[0]) / (p_max[1] - p_min[1]); |
| 1480 | s2_slope = (t_mid[0] - t_min[0]) / (p_mid[1] - p_min[1]); |
| 1481 | t1_slope = (t_max[1] - t_min[1]) / (p_max[1] - p_min[1]); |
| 1482 | t2_slope = (t_mid[1] - t_min[1]) / (p_mid[1] - p_min[1]); |
| 1483 | |
| 1484 | // Compute the t values used in the equation Ax = Ax + (Bx - Ax)*t |
| 1485 | // We only need one t, because it is only used to compute the start. |
| 1486 | // Create storage for the interpolated x and z values for both lines |
| 1487 | // also for the RGB interpolation |
| 1488 | t = (((float)y_min) + 0.5 - p_min[1]) / (p_max[1] - p_min[1]); |
| 1489 | x1_interp = p_min[0] + (p_max[0] - p_min[0]) * t; |
| 1490 | z1_interp = p_min[2] + (p_max[2] - p_min[2]) * t; |
| 1491 | w1_interp = p_min[3] + (p_max[3] - p_min[3]) * t; |
| 1492 | r1_interp = c_min[0] + (c_max[0] - c_min[0]) * t; |
| 1493 | g1_interp = c_min[1] + (c_max[1] - c_min[1]) * t; |
| 1494 | b1_interp = c_min[2] + (c_max[2] - c_min[2]) * t; |
| 1495 | s1_interp = t_min[0] + (t_max[0] - t_min[0]) * t; |
| 1496 | t1_interp = t_min[1] + (t_max[1] - t_min[1]) * t; |
| 1497 | |
| 1498 | t = (((float)y_min) + 0.5 - p_min[1]) / (p_mid[1] - p_min[1]); |
| 1499 | x2_interp = p_min[0] + (p_mid[0] - p_min[0]) * t; |
| 1500 | z2_interp = p_min[2] + (p_mid[2] - p_min[2]) * t; |
| 1501 | w2_interp = p_min[3] + (p_mid[3] - p_min[3]) * t; |
| 1502 | r2_interp = c_min[0] + (c_mid[0] - c_min[0]) * t; |
| 1503 | g2_interp = c_min[1] + (c_mid[1] - c_min[1]) * t; |
| 1504 | b2_interp = c_min[2] + (c_mid[2] - c_min[2]) * t; |
| 1505 | s2_interp = t_min[0] + (t_mid[0] - t_min[0]) * t; |
| 1506 | t2_interp = t_min[1] + (t_mid[1] - t_min[1]) * t; |
| 1507 | |
| 1508 | // First work on the bottom half of the triangle |
| 1509 | // I'm using y_min as the incrementer because it saves space and we don't need it anymore |
| 1510 | for (; y_min < y_mid; y_min++) { |
| 1511 | // We always want to fill left to right, so we have 2 main cases |
| 1512 | // Compute the integer starting and ending points and the appropriate z by |
| 1513 | // interpolating. Remember the pixels are in the middle of the grid, i.e. (0.5,0.5,0.5) |
| 1514 | if (x1_interp < x2_interp) { |
| 1515 | x_start = ((((int)x1_interp) + 0.5) >= x1_interp) ? (int)x1_interp : ((int)x1_interp) + 1; |
| 1516 | x_end = ((((int)x2_interp) + 0.5) < x2_interp) ? (int)x2_interp : ((int)x2_interp) - 1; |
| 1517 | z_delta_x = (z2_interp - z1_interp) / (x2_interp - x1_interp); |
| 1518 | w_delta_x = (w2_interp - w1_interp) / (x2_interp - x1_interp); |
| 1519 | r_delta_x = (r2_interp - r1_interp) / (x2_interp - x1_interp); |
| 1520 | g_delta_x = (g2_interp - g1_interp) / (x2_interp - x1_interp); |
| 1521 | b_delta_x = (b2_interp - b1_interp) / (x2_interp - x1_interp); |
| 1522 | s_delta_x = (s2_interp - s1_interp) / (x2_interp - x1_interp); |
| 1523 | t_delta_x = (t2_interp - t1_interp) / (x2_interp - x1_interp); |
| 1524 | t = (x_start + 0.5 - x1_interp) / (x2_interp - x1_interp); |
| 1525 | z_interp_x = z1_interp + (z2_interp - z1_interp) * t; |
| 1526 | w_interp_x = w1_interp + (w2_interp - w1_interp) * t; |
| 1527 | r_interp_x = r1_interp + (r2_interp - r1_interp) * t; |
| 1528 | g_interp_x = g1_interp + (g2_interp - g1_interp) * t; |
| 1529 | b_interp_x = b1_interp + (b2_interp - b1_interp) * t; |
| 1530 | s_interp_x = s1_interp + (s2_interp - s1_interp) * t; |
| 1531 | t_interp_x = t1_interp + (t2_interp - t1_interp) * t; |
| 1532 | |
| 1533 | } else { |
| 1534 | x_start = ((((int)x2_interp) + 0.5) >= x2_interp) ? (int)x2_interp : ((int)x2_interp) + 1; |
| 1535 | x_end = ((((int)x1_interp) + 0.5) < x1_interp) ? (int)x1_interp : ((int)x1_interp) - 1; |
| 1536 | z_delta_x = (z1_interp - z2_interp) / (x1_interp - x2_interp); |
| 1537 | w_delta_x = (w1_interp - w2_interp) / (x1_interp - x2_interp); |
| 1538 | r_delta_x = (r1_interp - r2_interp) / (x1_interp - x2_interp); |
| 1539 | g_delta_x = (g1_interp - g2_interp) / (x1_interp - x2_interp); |
| 1540 | b_delta_x = (b1_interp - b2_interp) / (x1_interp - x2_interp); |
| 1541 | s_delta_x = (s1_interp - s2_interp) / (x1_interp - x2_interp); |
| 1542 | t_delta_x = (t1_interp - t2_interp) / (x1_interp - x2_interp); |
| 1543 | t = (x_start + 0.5 - x2_interp) / (x1_interp - x2_interp); |
| 1544 | z_interp_x = z2_interp + (z1_interp - z2_interp) * t; |
| 1545 | w_interp_x = w2_interp + (w1_interp - w2_interp) * t; |
| 1546 | r_interp_x = r2_interp + (r1_interp - r2_interp) * t; |
| 1547 | g_interp_x = g2_interp + (g1_interp - g2_interp) * t; |
| 1548 | b_interp_x = b2_interp + (b1_interp - b2_interp) * t; |
| 1549 | s_interp_x = s2_interp + (s1_interp - s2_interp) * t; |
| 1550 | t_interp_x = t2_interp + (t1_interp - t2_interp) * t; |
| 1551 | } |
| 1552 | |
| 1553 | // Pass the horizontal line to the filler, this could be put in the routine |
| 1554 | // then interpolate for the next values of x and z |
| 1555 | FillSmoothTexPCHorizontalLine( prOptions, |
| 1556 | x_start, x_end, y_min, z_interp_x, z_delta_x, w_interp_x, w_delta_x, |
| 1557 | r_interp_x, r_delta_x, g_interp_x, g_delta_x, b_interp_x, b_delta_x, |
| 1558 | s_interp_x, s_delta_x, t_interp_x, t_delta_x); |
| 1559 | x1_interp += x1_slope; z1_interp += z1_slope; |
| 1560 | x2_interp += x2_slope; z2_interp += z2_slope; |
| 1561 | r1_interp += r1_slope; r2_interp += r2_slope; |
| 1562 | g1_interp += g1_slope; g2_interp += g2_slope; |
| 1563 | b1_interp += b1_slope; b2_interp += b2_slope; |
| 1564 | w1_interp += w1_slope; w2_interp += w2_slope; |
| 1565 | s1_interp += s1_slope; s2_interp += s2_slope; |
| 1566 | t1_interp += t1_slope; t2_interp += t2_slope; |
| 1567 | } |
| 1568 | |
| 1569 | // Now do the same thing for the top half of the triangle. |
| 1570 | // We only need to recompute the x2 line because it changes at the midpoint |
| 1571 | x2_slope = (p_max[0] - p_mid[0]) / (p_max[1] - p_mid[1]); |
| 1572 | z2_slope = (p_max[2] - p_mid[2]) / (p_max[1] - p_mid[1]); |
| 1573 | w2_slope = (p_max[3] - p_mid[3]) / (p_max[1] - p_mid[1]); |
| 1574 | r2_slope = (c_max[0] - c_mid[0]) / (p_max[1] - p_mid[1]); |
| 1575 | g2_slope = (c_max[1] - c_mid[1]) / (p_max[1] - p_mid[1]); |
| 1576 | b2_slope = (c_max[2] - c_mid[2]) / (p_max[1] - p_mid[1]); |
| 1577 | s2_slope = (t_max[0] - t_mid[0]) / (p_max[1] - p_mid[1]); |
| 1578 | t2_slope = (t_max[1] - t_mid[1]) / (p_max[1] - p_mid[1]); |
| 1579 | |
| 1580 | t = (((float)y_mid) + 0.5 - p_mid[1]) / (p_max[1] - p_mid[1]); |
| 1581 | x2_interp = p_mid[0] + (p_max[0] - p_mid[0]) * t; |
| 1582 | z2_interp = p_mid[2] + (p_max[2] - p_mid[2]) * t; |
| 1583 | w2_interp = p_mid[3] + (p_max[3] - p_mid[3]) * t; |
| 1584 | r2_interp = c_mid[0] + (c_max[0] - c_mid[0]) * t; |
| 1585 | g2_interp = c_mid[1] + (c_max[1] - c_mid[1]) * t; |
| 1586 | b2_interp = c_mid[2] + (c_max[2] - c_mid[2]) * t; |
| 1587 | s2_interp = t_mid[0] + (t_max[0] - t_mid[0]) * t; |
| 1588 | t2_interp = t_mid[1] + (t_max[1] - t_mid[1]) * t; |
| 1589 | |
| 1590 | // We've seen this loop before haven't we? |
| 1591 | // I'm using y_mid as the incrementer because it saves space and we don't need it anymore |
| 1592 | for (; y_mid <= y_max; y_mid++) { |
| 1593 | if (x1_interp < x2_interp) { |
| 1594 | x_start = ((((int)x1_interp) + 0.5) >= x1_interp) ? (int)x1_interp : ((int)x1_interp) + 1; |
| 1595 | x_end = ((((int)x2_interp) + 0.5) < x2_interp) ? (int)x2_interp : ((int)x2_interp) - 1; |
| 1596 | z_delta_x = (z2_interp - z1_interp) / (x2_interp - x1_interp); |
| 1597 | w_delta_x = (w2_interp - w1_interp) / (x2_interp - x1_interp); |
| 1598 | r_delta_x = (r2_interp - r1_interp) / (x2_interp - x1_interp); |
| 1599 | g_delta_x = (g2_interp - g1_interp) / (x2_interp - x1_interp); |
| 1600 | b_delta_x = (b2_interp - b1_interp) / (x2_interp - x1_interp); |
| 1601 | s_delta_x = (s2_interp - s1_interp) / (x2_interp - x1_interp); |
| 1602 | t_delta_x = (t2_interp - t1_interp) / (x2_interp - x1_interp); |
| 1603 | t = (x_start + 0.5 - x1_interp) / (x2_interp - x1_interp); |
| 1604 | z_interp_x = z1_interp + (z2_interp - z1_interp) * t; |
| 1605 | w_interp_x = w1_interp + (w2_interp - w1_interp) * t; |
| 1606 | r_interp_x = r1_interp + (r2_interp - r1_interp) * t; |
| 1607 | g_interp_x = g1_interp + (g2_interp - g1_interp) * t; |
| 1608 | b_interp_x = b1_interp + (b2_interp - b1_interp) * t; |
| 1609 | s_interp_x = s1_interp + (s2_interp - s1_interp) * t; |
| 1610 | t_interp_x = t1_interp + (t2_interp - t1_interp) * t; |
| 1611 | |
| 1612 | } else { |
| 1613 | x_start = ((((int)x2_interp) + 0.5) >= x2_interp) ? (int)x2_interp : ((int)x2_interp) + 1; |
| 1614 | x_end = ((((int)x1_interp) + 0.5) < x1_interp) ? (int)x1_interp : ((int)x1_interp) - 1; |
| 1615 | z_delta_x = (z1_interp - z2_interp) / (x1_interp - x2_interp); |
| 1616 | w_delta_x = (w1_interp - w2_interp) / (x1_interp - x2_interp); |
| 1617 | r_delta_x = (r1_interp - r2_interp) / (x1_interp - x2_interp); |
| 1618 | g_delta_x = (g1_interp - g2_interp) / (x1_interp - x2_interp); |
| 1619 | b_delta_x = (b1_interp - b2_interp) / (x1_interp - x2_interp); |
| 1620 | s_delta_x = (s1_interp - s2_interp) / (x1_interp - x2_interp); |
| 1621 | t_delta_x = (t1_interp - t2_interp) / (x1_interp - x2_interp); |
| 1622 | t = (x_start + 0.5 - x2_interp) / (x1_interp - x2_interp); |
| 1623 | z_interp_x = z2_interp + (z1_interp - z2_interp) * t; |
| 1624 | w_interp_x = w2_interp + (w1_interp - w2_interp) * t; |
| 1625 | r_interp_x = r2_interp + (r1_interp - r2_interp) * t; |
| 1626 | g_interp_x = g2_interp + (g1_interp - g2_interp) * t; |
| 1627 | b_interp_x = b2_interp + (b1_interp - b2_interp) * t; |
| 1628 | s_interp_x = s2_interp + (s1_interp - s2_interp) * t; |
| 1629 | t_interp_x = t2_interp + (t1_interp - t2_interp) * t; |
| 1630 | } |
| 1631 | |
| 1632 | // Pass the horizontal line to the filler, this could be put in the routine |
| 1633 | // then interpolate for the next values of x and z |
| 1634 | FillSmoothTexPCHorizontalLine( prOptions, |
| 1635 | x_start, x_end, y_mid, z_interp_x, z_delta_x, w_interp_x, w_delta_x, |
| 1636 | r_interp_x, r_delta_x, g_interp_x, g_delta_x, b_interp_x, b_delta_x, |
| 1637 | s_interp_x, s_delta_x, t_interp_x, t_delta_x); |
| 1638 | x1_interp += x1_slope; z1_interp += z1_slope; |
| 1639 | x2_interp += x2_slope; z2_interp += z2_slope; |
| 1640 | r1_interp += r1_slope; r2_interp += r2_slope; |
| 1641 | g1_interp += g1_slope; g2_interp += g2_slope; |
| 1642 | b1_interp += b1_slope; b2_interp += b2_slope; |
| 1643 | w1_interp += w1_slope; w2_interp += w2_slope; |
| 1644 | s1_interp += s1_slope; s2_interp += s2_slope; |
| 1645 | t1_interp += t1_slope; t2_interp += t2_slope; |
| 1646 | } |
| 1647 | } |
| 1648 | |
| 1649 | void hng64_state::drawShaded( struct polygon *p) |
| 1650 | { |
| 1651 | // The perspective-correct texture divide... |
| 1652 | // !!! There is a very good chance the HNG64 hardware does not do perspective-correct texture-mapping !!! |
| 1653 | int j; |
| 1654 | for (j = 0; j < p->n; j++) |
| 1655 | { |
| 1656 | p->vert[j].clipCoords[3] = 1.0f / p->vert[j].clipCoords[3]; |
| 1657 | p->vert[j].light[0] = p->vert[j].light[0] * p->vert[j].clipCoords[3]; |
| 1658 | p->vert[j].light[1] = p->vert[j].light[1] * p->vert[j].clipCoords[3]; |
| 1659 | p->vert[j].light[2] = p->vert[j].light[2] * p->vert[j].clipCoords[3]; |
| 1660 | p->vert[j].texCoords[0] = p->vert[j].texCoords[0] * p->vert[j].clipCoords[3]; |
| 1661 | p->vert[j].texCoords[1] = p->vert[j].texCoords[1] * p->vert[j].clipCoords[3]; |
| 1662 | } |
| 1663 | |
| 1664 | // Set up the struct that will pass the polygon's options around. |
| 1665 | polygonRasterOptions prOptions; |
| 1666 | prOptions.texType = p->texType; |
| 1667 | prOptions.texIndex = p->texIndex; |
| 1668 | prOptions.palOffset = p->palOffset; |
| 1669 | prOptions.palPageSize = p->palPageSize; |
| 1670 | prOptions.debugColor = p->debugColor; |
| 1671 | prOptions.texPageSmall = p->texPageSmall; |
| 1672 | prOptions.texPageHorizOffset = p->texPageHorizOffset; |
| 1673 | prOptions.texPageVertOffset = p->texPageVertOffset; |
| 1674 | |
| 1675 | for (j = 1; j < p->n-1; j++) |
| 1676 | { |
| 1677 | RasterizeTriangle_SMOOTH_TEX_PC( |
| 1678 | p->vert[0].clipCoords, p->vert[j].clipCoords, p->vert[j+1].clipCoords, |
| 1679 | p->vert[0].light, p->vert[j].light, p->vert[j+1].light, |
| 1680 | p->vert[0].texCoords, p->vert[j].texCoords, p->vert[j+1].texCoords, |
| 1681 | prOptions); |
| 1682 | } |
| 1683 | } |
| 1684 | |