trunk/src/mess/machine/gb.c
| r20640 | r20641 | |
| 130 | 130 | |
| 131 | 131 | |
| 132 | 132 | static void gb_machine_stop(running_machine &machine); |
| 133 | | static void gb_timer_increment( running_machine &machine ); |
| 134 | 133 | |
| 135 | 134 | #ifdef MAME_DEBUG |
| 136 | 135 | /* #define V_GENERAL*/ /* Display general debug information */ |
| 137 | 136 | /* #define V_BANK*/ /* Display bank switching debug information */ |
| 138 | 137 | #endif |
| 139 | 138 | |
| 140 | | static void gb_init_regs(running_machine &machine) |
| 139 | void gb_state::gb_init_regs() |
| 141 | 140 | { |
| 142 | | gb_state *state = machine.driver_data<gb_state>(); |
| 143 | 141 | /* Initialize the registers */ |
| 144 | | state->SIODATA = 0x00; |
| 145 | | state->SIOCONT = 0x7E; |
| 142 | SIODATA = 0x00; |
| 143 | SIOCONT = 0x7E; |
| 146 | 144 | |
| 147 | | state->gb_io_w( machine.device("maincpu")->memory().space(AS_PROGRAM ), 0x05, 0x00 ); /* TIMECNT */ |
| 148 | | state->gb_io_w( machine.device("maincpu")->memory().space(AS_PROGRAM ), 0x06, 0x00 ); /* TIMEMOD */ |
| 145 | gb_io_w( m_maincpu->space(AS_PROGRAM ), 0x05, 0x00 ); /* TIMECNT */ |
| 146 | gb_io_w( m_maincpu->space(AS_PROGRAM ), 0x06, 0x00 ); /* TIMEMOD */ |
| 149 | 147 | } |
| 150 | 148 | |
| 151 | | static void gb_rom16_0000( running_machine &machine, UINT8 *addr ) |
| 149 | |
| 150 | void gb_state::gb_rom16_0000( UINT8 *addr ) |
| 152 | 151 | { |
| 153 | | gb_state *state = machine.driver_data<gb_state>(); |
| 154 | | state->membank( "bank5" )->set_base( addr ); |
| 155 | | state->membank( "bank10" )->set_base( addr + 0x0100 ); |
| 156 | | state->membank( "bank6" )->set_base( addr + 0x0200 ); |
| 157 | | state->membank( "bank11" )->set_base( addr + 0x0900 ); |
| 152 | m_bank5->set_base( addr ); |
| 153 | m_bank10->set_base( addr + 0x0100 ); |
| 154 | m_bank6->set_base( addr + 0x0200 ); |
| 155 | m_bank11->set_base( addr + 0x0900 ); |
| 158 | 156 | } |
| 159 | 157 | |
| 160 | | static void gb_rom16_4000( running_machine &machine, UINT8 *addr ) |
| 158 | |
| 159 | void gb_state::gb_rom16_4000( UINT8 *addr ) |
| 161 | 160 | { |
| 162 | | gb_state *state = machine.driver_data<gb_state>(); |
| 163 | | state->membank( "bank1" )->set_base( addr ); |
| 164 | | state->membank( "bank4" )->set_base( addr + 0x2000 ); |
| 161 | m_bank1->set_base( addr ); |
| 162 | m_bank4->set_base( addr + 0x2000 ); |
| 165 | 163 | } |
| 166 | 164 | |
| 167 | | static void gb_rom8_4000( running_machine &machine, UINT8 *addr ) |
| 165 | |
| 166 | void gb_state::gb_rom8_4000( UINT8 *addr ) |
| 168 | 167 | { |
| 169 | | gb_state *state = machine.driver_data<gb_state>(); |
| 170 | | state->membank( "bank1" )->set_base( addr ); |
| 168 | m_bank1->set_base( addr ); |
| 171 | 169 | } |
| 172 | 170 | |
| 173 | | static void gb_rom8_6000( running_machine &machine, UINT8 *addr ) |
| 171 | |
| 172 | void gb_state::gb_rom8_6000( UINT8 *addr ) |
| 174 | 173 | { |
| 175 | | gb_state *state = machine.driver_data<gb_state>(); |
| 176 | | state->membank( "bank4" )->set_base( addr ); |
| 174 | m_bank4->set_base( addr ); |
| 177 | 175 | } |
| 178 | 176 | |
| 179 | | static void gb_init(running_machine &machine) |
| 177 | |
| 178 | void gb_state::gb_init() |
| 180 | 179 | { |
| 181 | | gb_state *state = machine.driver_data<gb_state>(); |
| 182 | | address_space &space = machine.device( "maincpu")->memory().space( AS_PROGRAM ); |
| 180 | address_space &space = m_maincpu->space( AS_PROGRAM ); |
| 183 | 181 | |
| 184 | 182 | /* Initialize the memory banks */ |
| 185 | | state->m_MBC1Mode = 0; |
| 186 | | state->m_MBC3RTCBank = 0; |
| 187 | | state->m_ROMBank = state->m_ROMBank00 + 1; |
| 188 | | state->m_RAMBank = 0; |
| 183 | m_MBC1Mode = 0; |
| 184 | m_MBC3RTCBank = 0; |
| 185 | m_ROMBank = m_ROMBank00 + 1; |
| 186 | m_RAMBank = 0; |
| 189 | 187 | |
| 190 | | if (state->m_gb_cart) |
| 188 | if (m_gb_cart) |
| 191 | 189 | { |
| 192 | | if ( state->m_MBCType != MBC_MEGADUCK ) |
| 190 | if ( m_MBCType != MBC_MEGADUCK ) |
| 193 | 191 | { |
| 194 | | gb_rom16_4000( machine, state->m_ROMMap[state->m_ROMBank] ); |
| 195 | | state->membank ("bank2")->set_base (state->m_RAMMap[state->m_RAMBank] ? state->m_RAMMap[state->m_RAMBank] : state->m_gb_dummy_ram_bank); |
| 192 | gb_rom16_4000( m_ROMMap[m_ROMBank] ); |
| 193 | m_bank2->set_base( m_RAMMap[m_RAMBank] ? m_RAMMap[m_RAMBank] : m_gb_dummy_ram_bank); |
| 196 | 194 | } |
| 197 | 195 | else |
| 198 | 196 | { |
| 199 | | state->membank( "bank1" )->set_base( state->m_ROMMap[state->m_ROMBank] ); |
| 200 | | state->membank( "bank10" )->set_base( state->m_ROMMap[0] ); |
| 197 | m_bank1->set_base( m_ROMMap[m_ROMBank] ); |
| 198 | m_bank10->set_base( m_ROMMap[0] ); |
| 201 | 199 | } |
| 202 | 200 | } |
| 203 | 201 | |
| 204 | 202 | /* Set handlers based on the Memory Bank Controller in the cart */ |
| 205 | | switch( state->m_MBCType ) |
| 203 | switch( m_MBCType ) |
| 206 | 204 | { |
| 207 | 205 | case MBC_NONE: |
| 208 | 206 | break; |
| 209 | 207 | case MBC_MMM01: |
| 210 | | space.install_write_handler( 0x0000, 0x1fff, write8_delegate(FUNC(gb_state::gb_rom_bank_mmm01_0000_w),state) ); |
| 211 | | space.install_write_handler( 0x2000, 0x3fff, write8_delegate(FUNC(gb_state::gb_rom_bank_mmm01_2000_w),state)); |
| 212 | | space.install_write_handler( 0x4000, 0x5fff, write8_delegate(FUNC(gb_state::gb_rom_bank_mmm01_4000_w),state)); |
| 213 | | space.install_write_handler( 0x6000, 0x7fff, write8_delegate(FUNC(gb_state::gb_rom_bank_mmm01_6000_w),state)); |
| 208 | space.install_write_handler( 0x0000, 0x1fff, write8_delegate(FUNC(gb_state::gb_rom_bank_mmm01_0000_w),this) ); |
| 209 | space.install_write_handler( 0x2000, 0x3fff, write8_delegate(FUNC(gb_state::gb_rom_bank_mmm01_2000_w),this)); |
| 210 | space.install_write_handler( 0x4000, 0x5fff, write8_delegate(FUNC(gb_state::gb_rom_bank_mmm01_4000_w),this)); |
| 211 | space.install_write_handler( 0x6000, 0x7fff, write8_delegate(FUNC(gb_state::gb_rom_bank_mmm01_6000_w),this)); |
| 214 | 212 | break; |
| 215 | 213 | case MBC_MBC1: |
| 216 | | space.install_write_handler( 0x0000, 0x1fff, write8_delegate(FUNC(gb_state::gb_ram_enable),state) ); /* We don't emulate RAM enable yet */ |
| 217 | | space.install_write_handler( 0x2000, 0x3fff, write8_delegate(FUNC(gb_state::gb_rom_bank_select_mbc1),state) ); |
| 218 | | space.install_write_handler( 0x4000, 0x5fff, write8_delegate(FUNC(gb_state::gb_ram_bank_select_mbc1),state) ); |
| 219 | | space.install_write_handler( 0x6000, 0x7fff, write8_delegate(FUNC(gb_state::gb_mem_mode_select_mbc1),state) ); |
| 214 | space.install_write_handler( 0x0000, 0x1fff, write8_delegate(FUNC(gb_state::gb_ram_enable),this) ); /* We don't emulate RAM enable yet */ |
| 215 | space.install_write_handler( 0x2000, 0x3fff, write8_delegate(FUNC(gb_state::gb_rom_bank_select_mbc1),this) ); |
| 216 | space.install_write_handler( 0x4000, 0x5fff, write8_delegate(FUNC(gb_state::gb_ram_bank_select_mbc1),this) ); |
| 217 | space.install_write_handler( 0x6000, 0x7fff, write8_delegate(FUNC(gb_state::gb_mem_mode_select_mbc1),this) ); |
| 220 | 218 | break; |
| 221 | 219 | case MBC_MBC2: |
| 222 | | space.install_write_handler( 0x2000, 0x3fff, write8_delegate(FUNC(gb_state::gb_rom_bank_select_mbc2),state) ); |
| 220 | space.install_write_handler( 0x2000, 0x3fff, write8_delegate(FUNC(gb_state::gb_rom_bank_select_mbc2),this) ); |
| 223 | 221 | break; |
| 224 | 222 | case MBC_MBC3: |
| 225 | 223 | case MBC_HUC1: /* Possibly wrong */ |
| 226 | 224 | case MBC_HUC3: /* Possibly wrong */ |
| 227 | | space.install_write_handler( 0x0000, 0x1fff, write8_delegate(FUNC(gb_state::gb_ram_enable),state) ); /* We don't emulate RAM enable yet */ |
| 228 | | space.install_write_handler( 0x2000, 0x3fff, write8_delegate(FUNC(gb_state::gb_rom_bank_select_mbc3),state) ); |
| 229 | | space.install_write_handler( 0x4000, 0x5fff, write8_delegate(FUNC(gb_state::gb_ram_bank_select_mbc3),state) ); |
| 230 | | space.install_write_handler( 0x6000, 0x7fff, write8_delegate(FUNC(gb_state::gb_mem_mode_select_mbc3),state) ); |
| 225 | space.install_write_handler( 0x0000, 0x1fff, write8_delegate(FUNC(gb_state::gb_ram_enable),this) ); /* We don't emulate RAM enable yet */ |
| 226 | space.install_write_handler( 0x2000, 0x3fff, write8_delegate(FUNC(gb_state::gb_rom_bank_select_mbc3),this) ); |
| 227 | space.install_write_handler( 0x4000, 0x5fff, write8_delegate(FUNC(gb_state::gb_ram_bank_select_mbc3),this) ); |
| 228 | space.install_write_handler( 0x6000, 0x7fff, write8_delegate(FUNC(gb_state::gb_mem_mode_select_mbc3),this) ); |
| 231 | 229 | break; |
| 232 | 230 | case MBC_MBC5: |
| 233 | | space.install_write_handler( 0x0000, 0x1fff, write8_delegate(FUNC(gb_state::gb_ram_enable),state) ); |
| 234 | | space.install_write_handler( 0x2000, 0x3fff, write8_delegate(FUNC(gb_state::gb_rom_bank_select_mbc5),state) ); |
| 235 | | space.install_write_handler( 0x4000, 0x5fff, write8_delegate(FUNC(gb_state::gb_ram_bank_select_mbc5),state) ); |
| 231 | space.install_write_handler( 0x0000, 0x1fff, write8_delegate(FUNC(gb_state::gb_ram_enable),this) ); |
| 232 | space.install_write_handler( 0x2000, 0x3fff, write8_delegate(FUNC(gb_state::gb_rom_bank_select_mbc5),this) ); |
| 233 | space.install_write_handler( 0x4000, 0x5fff, write8_delegate(FUNC(gb_state::gb_ram_bank_select_mbc5),this) ); |
| 236 | 234 | break; |
| 237 | 235 | case MBC_MBC6: |
| 238 | | space.install_write_handler( 0x0000, 0x1fff, write8_delegate(FUNC(gb_state::gb_ram_bank_select_mbc6),state) ); |
| 239 | | space.install_write_handler( 0x2000, 0x2fff, write8_delegate(FUNC(gb_state::gb_rom_bank_select_mbc6_1),state) ); |
| 240 | | space.install_write_handler( 0x3000, 0x3fff, write8_delegate(FUNC(gb_state::gb_rom_bank_select_mbc6_2),state) ); |
| 236 | space.install_write_handler( 0x0000, 0x1fff, write8_delegate(FUNC(gb_state::gb_ram_bank_select_mbc6),this) ); |
| 237 | space.install_write_handler( 0x2000, 0x2fff, write8_delegate(FUNC(gb_state::gb_rom_bank_select_mbc6_1),this) ); |
| 238 | space.install_write_handler( 0x3000, 0x3fff, write8_delegate(FUNC(gb_state::gb_rom_bank_select_mbc6_2),this) ); |
| 241 | 239 | break; |
| 242 | 240 | case MBC_MBC7: |
| 243 | | space.install_write_handler( 0x0000, 0x1fff, write8_delegate(FUNC(gb_state::gb_ram_enable),state) ); |
| 244 | | space.install_write_handler( 0x2000, 0x2fff, write8_delegate(FUNC(gb_state::gb_rom_bank_select_mbc7),state) ); |
| 245 | | space.install_write_handler( 0x3000, 0x7fff, write8_delegate(FUNC(gb_state::gb_rom_bank_unknown_mbc7),state) ); |
| 241 | space.install_write_handler( 0x0000, 0x1fff, write8_delegate(FUNC(gb_state::gb_ram_enable),this) ); |
| 242 | space.install_write_handler( 0x2000, 0x2fff, write8_delegate(FUNC(gb_state::gb_rom_bank_select_mbc7),this) ); |
| 243 | space.install_write_handler( 0x3000, 0x7fff, write8_delegate(FUNC(gb_state::gb_rom_bank_unknown_mbc7),this) ); |
| 246 | 244 | break; |
| 247 | 245 | case MBC_TAMA5: |
| 248 | | space.install_write_handler( 0xA000, 0xBFFF, write8_delegate(FUNC(gb_state::gb_ram_tama5),state) ); |
| 246 | space.install_write_handler( 0xA000, 0xBFFF, write8_delegate(FUNC(gb_state::gb_ram_tama5),this) ); |
| 249 | 247 | break; |
| 250 | 248 | case MBC_WISDOM: |
| 251 | | space.install_write_handler( 0x0000, 0x3fff, write8_delegate(FUNC(gb_state::gb_rom_bank_select_wisdom),state) ); |
| 249 | space.install_write_handler( 0x0000, 0x3fff, write8_delegate(FUNC(gb_state::gb_rom_bank_select_wisdom),this) ); |
| 252 | 250 | break; |
| 253 | 251 | case MBC_MBC1_KOR: |
| 254 | | space.install_write_handler( 0x0000, 0x1fff, write8_delegate(FUNC(gb_state::gb_ram_enable),state) ); /* We don't emulate RAM enable yet */ |
| 255 | | space.install_write_handler( 0x2000, 0x3fff, write8_delegate(FUNC(gb_state::gb_rom_bank_select_mbc1_kor),state) ); |
| 256 | | space.install_write_handler( 0x4000, 0x5fff, write8_delegate(FUNC(gb_state::gb_ram_bank_select_mbc1_kor),state) ); |
| 257 | | space.install_write_handler( 0x6000, 0x7fff, write8_delegate(FUNC(gb_state::gb_mem_mode_select_mbc1_kor),state) ); |
| 252 | space.install_write_handler( 0x0000, 0x1fff, write8_delegate(FUNC(gb_state::gb_ram_enable),this) ); /* We don't emulate RAM enable yet */ |
| 253 | space.install_write_handler( 0x2000, 0x3fff, write8_delegate(FUNC(gb_state::gb_rom_bank_select_mbc1_kor),this) ); |
| 254 | space.install_write_handler( 0x4000, 0x5fff, write8_delegate(FUNC(gb_state::gb_ram_bank_select_mbc1_kor),this) ); |
| 255 | space.install_write_handler( 0x6000, 0x7fff, write8_delegate(FUNC(gb_state::gb_mem_mode_select_mbc1_kor),this) ); |
| 258 | 256 | break; |
| 259 | 257 | case MBC_YONGYONG: |
| 260 | | space.install_write_handler( 0x2000, 0x2000, write8_delegate(FUNC(gb_state::gb_rom_bank_yongyong_2000),state) ); |
| 261 | | //space.install_write_handler( 0x5000, 0x5003, write8_delegate(FUNC(gb_state::gb_rom_back_yongyong_5000),state) ); |
| 258 | space.install_write_handler( 0x2000, 0x2000, write8_delegate(FUNC(gb_state::gb_rom_bank_yongyong_2000),this) ); |
| 259 | //space.install_write_handler( 0x5000, 0x5003, write8_delegate(FUNC(gb_state::gb_rom_back_yongyong_5000),this) ); |
| 262 | 260 | break; |
| 263 | 261 | case MBC_LASAMA: |
| 264 | | space.install_write_handler( 0x2080, 0x2080, write8_delegate(FUNC(gb_state::gb_rom_bank_lasama_2080),state) ); |
| 265 | | space.install_write_handler( 0x6000, 0x6000, write8_delegate(FUNC(gb_state::gb_rom_bank_lasama_6000),state) ); |
| 262 | space.install_write_handler( 0x2080, 0x2080, write8_delegate(FUNC(gb_state::gb_rom_bank_lasama_2080),this) ); |
| 263 | space.install_write_handler( 0x6000, 0x6000, write8_delegate(FUNC(gb_state::gb_rom_bank_lasama_6000),this) ); |
| 266 | 264 | break; |
| 267 | 265 | case MBC_ATVRACIN: |
| 268 | | space.install_write_handler( 0x3F00, 0x3F00, write8_delegate(FUNC(gb_state::gb_rom_bank_atvracin_3f00),state) ); |
| 269 | | space.install_write_handler( 0x3FC0, 0x3FC0, write8_delegate(FUNC(gb_state::gb_rom_bank_atvracin_3fc0),state) ); |
| 266 | space.install_write_handler( 0x3F00, 0x3F00, write8_delegate(FUNC(gb_state::gb_rom_bank_atvracin_3f00),this) ); |
| 267 | space.install_write_handler( 0x3FC0, 0x3FC0, write8_delegate(FUNC(gb_state::gb_rom_bank_atvracin_3fc0),this) ); |
| 270 | 268 | break; |
| 271 | 269 | |
| 272 | 270 | case MBC_MEGADUCK: |
| 273 | | space.install_write_handler( 0x0001, 0x0001, write8_delegate(FUNC(gb_state::megaduck_rom_bank_select_type1),state) ); |
| 274 | | space.install_write_handler( 0xB000, 0xB000, write8_delegate(FUNC(gb_state::megaduck_rom_bank_select_type2),state) ); |
| 271 | space.install_write_handler( 0x0001, 0x0001, write8_delegate(FUNC(gb_state::megaduck_rom_bank_select_type1),this) ); |
| 272 | space.install_write_handler( 0xB000, 0xB000, write8_delegate(FUNC(gb_state::megaduck_rom_bank_select_type2),this) ); |
| 275 | 273 | break; |
| 276 | 274 | } |
| 277 | 275 | |
| 278 | | gb_sound_w(space.machine().device("custom"), space, 0x16, 0x00 ); /* Initialize sound hardware */ |
| 276 | gb_sound_w(machine().device("custom"), space, 0x16, 0x00 ); /* Initialize sound hardware */ |
| 279 | 277 | |
| 280 | | state->m_divcount = 0; |
| 281 | | state->m_triggering_irq = 0; |
| 282 | | state->m_gb_io[0x07] = 0xF8; /* Upper bits of TIMEFRQ register are set to 1 */ |
| 278 | m_divcount = 0; |
| 279 | m_triggering_irq = 0; |
| 280 | m_gb_io[0x07] = 0xF8; /* Upper bits of TIMEFRQ register are set to 1 */ |
| 283 | 281 | } |
| 284 | 282 | |
| 283 | |
| 285 | 284 | MACHINE_START_MEMBER(gb_state,gb) |
| 286 | 285 | { |
| 287 | 286 | machine().add_notifier(MACHINE_NOTIFY_EXIT, machine_notify_delegate(FUNC(gb_machine_stop),&machine())); |
| r20640 | r20641 | |
| 306 | 305 | |
| 307 | 306 | MACHINE_RESET_MEMBER(gb_state,gb) |
| 308 | 307 | { |
| 309 | | gb_init(machine()); |
| 308 | gb_init(); |
| 310 | 309 | |
| 311 | | gb_video_reset( machine(), GB_VIDEO_DMG ); |
| 310 | gb_video_reset( GB_VIDEO_DMG ); |
| 312 | 311 | |
| 313 | | gb_rom16_0000( machine(), m_ROMMap[m_ROMBank00] ); |
| 312 | gb_rom16_0000( m_ROMMap[m_ROMBank00] ); |
| 314 | 313 | |
| 315 | 314 | /* Enable BIOS rom */ |
| 316 | | membank("bank5")->set_base(memregion("maincpu")->base() ); |
| 315 | m_bank5->set_base(memregion("maincpu")->base() ); |
| 317 | 316 | |
| 318 | 317 | m_divcount = 0x0004; |
| 319 | 318 | } |
| r20640 | r20641 | |
| 335 | 334 | |
| 336 | 335 | MACHINE_RESET_MEMBER(gb_state,sgb) |
| 337 | 336 | { |
| 338 | | gb_init(machine()); |
| 337 | gb_init(); |
| 339 | 338 | |
| 340 | | gb_video_reset( machine(), GB_VIDEO_SGB ); |
| 339 | gb_video_reset( GB_VIDEO_SGB ); |
| 341 | 340 | |
| 342 | | gb_init_regs(machine()); |
| 341 | gb_init_regs(); |
| 343 | 342 | |
| 344 | | gb_rom16_0000( machine(), m_ROMMap[m_ROMBank00] ? m_ROMMap[m_ROMBank00] : m_gb_dummy_rom_bank ); |
| 343 | gb_rom16_0000( m_ROMMap[m_ROMBank00] ? m_ROMMap[m_ROMBank00] : m_gb_dummy_rom_bank ); |
| 345 | 344 | |
| 346 | 345 | /* Enable BIOS rom */ |
| 347 | | membank("bank5")->set_base(memregion("maincpu")->base() ); |
| 346 | m_bank5->set_base(memregion("maincpu")->base() ); |
| 348 | 347 | |
| 349 | 348 | memset( m_sgb_tile_data, 0, 0x2000 ); |
| 350 | 349 | |
| r20640 | r20641 | |
| 369 | 368 | |
| 370 | 369 | MACHINE_RESET_MEMBER(gb_state,gbpocket) |
| 371 | 370 | { |
| 372 | | gb_init(machine()); |
| 371 | gb_init(); |
| 373 | 372 | |
| 374 | | gb_video_reset( machine(), GB_VIDEO_MGB ); |
| 373 | gb_video_reset( GB_VIDEO_MGB ); |
| 375 | 374 | |
| 376 | | gb_init_regs(machine()); |
| 375 | gb_init_regs(); |
| 377 | 376 | |
| 378 | 377 | /* Initialize the Sound registers */ |
| 379 | 378 | gb_sound_w(machine().device("custom"), generic_space(), 0x16,0x80); |
| r20640 | r20641 | |
| 381 | 380 | gb_sound_w(machine().device("custom"), generic_space(), 0x14,0x77); |
| 382 | 381 | |
| 383 | 382 | /* Enable BIOS rom if we have one */ |
| 384 | | gb_rom16_0000( machine(), m_ROMMap[m_ROMBank00] ? m_ROMMap[m_ROMBank00] : m_gb_dummy_rom_bank ); |
| 383 | gb_rom16_0000( m_ROMMap[m_ROMBank00] ? m_ROMMap[m_ROMBank00] : m_gb_dummy_rom_bank ); |
| 385 | 384 | |
| 386 | 385 | m_divcount = 0xABC8; |
| 387 | 386 | } |
| r20640 | r20641 | |
| 390 | 389 | { |
| 391 | 390 | int ii; |
| 392 | 391 | |
| 393 | | gb_init(machine()); |
| 392 | gb_init(); |
| 394 | 393 | |
| 395 | | gb_video_reset( machine(), GB_VIDEO_CGB ); |
| 394 | gb_video_reset( GB_VIDEO_CGB ); |
| 396 | 395 | |
| 397 | | gb_init_regs(machine()); |
| 396 | gb_init_regs(); |
| 398 | 397 | |
| 399 | | gb_rom16_0000( machine(), m_ROMMap[m_ROMBank00] ? m_ROMMap[m_ROMBank00] : m_gb_dummy_rom_bank ); |
| 398 | gb_rom16_0000( m_ROMMap[m_ROMBank00] ? m_ROMMap[m_ROMBank00] : m_gb_dummy_rom_bank ); |
| 400 | 399 | |
| 401 | 400 | /* Enable BIOS rom */ |
| 402 | | membank("bank5")->set_base(machine().root_device().memregion("maincpu")->base() ); |
| 403 | | membank("bank6")->set_base(memregion("maincpu")->base() + 0x100 ); |
| 401 | m_bank5->set_base(memregion("maincpu")->base() ); |
| 402 | m_bank6->set_base(memregion("maincpu")->base() + 0x100 ); |
| 404 | 403 | |
| 405 | 404 | /* Allocate memory for internal ram */ |
| 406 | 405 | for( ii = 0; ii < 8; ii++ ) |
| r20640 | r20641 | |
| 424 | 423 | image->battery_save(state->m_gb_cart_ram, state->m_RAMBanks * 0x2000); |
| 425 | 424 | } |
| 426 | 425 | |
| 427 | | static void gb_set_mbc1_banks( running_machine &machine ) |
| 426 | void gb_state::gb_set_mbc1_banks() |
| 428 | 427 | { |
| 429 | | gb_state *state = machine.driver_data<gb_state>(); |
| 430 | | gb_rom16_4000( machine, state->m_ROMMap[ state->m_ROMBank ] ); |
| 431 | | state->membank( "bank2" )->set_base( state->m_RAMMap[ state->m_MBC1Mode ? ( state->m_ROMBank >> 5 ) : 0 ] ); |
| 428 | gb_rom16_4000( m_ROMMap[ m_ROMBank ] ); |
| 429 | m_bank2->set_base( m_RAMMap[ m_MBC1Mode ? ( m_ROMBank >> 5 ) : 0 ] ); |
| 432 | 430 | } |
| 433 | 431 | |
| 434 | 432 | WRITE8_MEMBER(gb_state::gb_rom_bank_select_mbc1) |
| r20640 | r20641 | |
| 440 | 438 | |
| 441 | 439 | m_ROMBank = ( m_ROMBank & 0x01E0 ) | data; |
| 442 | 440 | /* Switch banks */ |
| 443 | | gb_set_mbc1_banks(machine()); |
| 441 | gb_set_mbc1_banks(); |
| 444 | 442 | } |
| 445 | 443 | |
| 446 | 444 | WRITE8_MEMBER(gb_state::gb_rom_bank_select_mbc2) |
| r20640 | r20641 | |
| 454 | 452 | if( offset & 0x0100 ) |
| 455 | 453 | m_ROMBank = ( m_ROMBank & 0x100 ) | data; |
| 456 | 454 | /* Switch banks */ |
| 457 | | gb_rom16_4000( machine(), m_ROMMap[m_ROMBank] ); |
| 455 | gb_rom16_4000( m_ROMMap[m_ROMBank] ); |
| 458 | 456 | } |
| 459 | 457 | |
| 460 | 458 | WRITE8_MEMBER(gb_state::gb_rom_bank_select_mbc3) |
| r20640 | r20641 | |
| 467 | 465 | |
| 468 | 466 | m_ROMBank = ( m_ROMBank & 0x0100 ) | data; |
| 469 | 467 | /* Switch banks */ |
| 470 | | gb_rom16_4000( machine(), m_ROMMap[m_ROMBank] ); |
| 468 | gb_rom16_4000( m_ROMMap[m_ROMBank] ); |
| 471 | 469 | } |
| 472 | 470 | |
| 473 | 471 | WRITE8_MEMBER(gb_state::gb_rom_bank_select_mbc5) |
| r20640 | r20641 | |
| 486 | 484 | m_ROMBank = (m_ROMBank & 0x100 ) | data; |
| 487 | 485 | } |
| 488 | 486 | /* Switch banks */ |
| 489 | | gb_rom16_4000( machine(), m_ROMMap[m_ROMBank] ); |
| 487 | gb_rom16_4000( m_ROMMap[m_ROMBank] ); |
| 490 | 488 | } |
| 491 | 489 | |
| 492 | 490 | WRITE8_MEMBER(gb_state::gb_ram_bank_select_mbc6) |
| r20640 | r20641 | |
| 501 | 499 | { |
| 502 | 500 | if ( data == 0x00 ) |
| 503 | 501 | { |
| 504 | | gb_rom8_4000( machine(), m_ROMMap[m_ROMBank>>1] + ( ( m_ROMBank & 0x01 ) ? 0x2000 : 0x0000 ) ); |
| 502 | gb_rom8_4000( m_ROMMap[m_ROMBank>>1] + ( ( m_ROMBank & 0x01 ) ? 0x2000 : 0x0000 ) ); |
| 505 | 503 | } |
| 506 | 504 | } |
| 507 | 505 | else |
| r20640 | r20641 | |
| 517 | 515 | { |
| 518 | 516 | if ( data == 0x00 ) |
| 519 | 517 | { |
| 520 | | gb_rom8_6000( machine(), m_ROMMap[m_ROMBank00>>1] + ( ( m_ROMBank00 & 0x01 ) ? 0x2000 : 0x0000 ) ); |
| 518 | gb_rom8_6000( m_ROMMap[m_ROMBank00>>1] + ( ( m_ROMBank00 & 0x01 ) ? 0x2000 : 0x0000 ) ); |
| 521 | 519 | } |
| 522 | 520 | } |
| 523 | 521 | else |
| r20640 | r20641 | |
| 533 | 531 | if ( offset & 0x0100 ) |
| 534 | 532 | { |
| 535 | 533 | m_ROMBank = data; |
| 536 | | gb_rom16_4000( machine(), m_ROMMap[m_ROMBank] ); |
| 534 | gb_rom16_4000( m_ROMMap[m_ROMBank] ); |
| 537 | 535 | } |
| 538 | 536 | } |
| 539 | 537 | |
| r20640 | r20641 | |
| 560 | 558 | logerror( "0x%04X: wisdom tree mapper write to address 0x%04X\n", space.device() .safe_pc( ), offset ); |
| 561 | 559 | /* The address determines the bank to select */ |
| 562 | 560 | m_ROMBank = ( offset << 1 ) & 0x1FF; |
| 563 | | membank( "bank5" )->set_base( m_ROMMap[ m_ROMBank ] ); |
| 564 | | membank( "bank10" )->set_base( m_ROMMap[ m_ROMBank ] + 0x0100 ); |
| 565 | | membank( "bank6" )->set_base( m_ROMMap[ m_ROMBank ] + 0x0200 ); |
| 566 | | membank( "bank11" )->set_base( m_ROMMap[ m_ROMBank ] + 0x0900 ); |
| 567 | | membank( "bank1" )->set_base( m_ROMMap[ m_ROMBank + 1 ] ); |
| 568 | | membank( "bank4" )->set_base( m_ROMMap[ m_ROMBank + 1 ] + 0x2000 ); |
| 561 | m_bank5->set_base( m_ROMMap[ m_ROMBank ] ); |
| 562 | m_bank10->set_base( m_ROMMap[ m_ROMBank ] + 0x0100 ); |
| 563 | m_bank6->set_base( m_ROMMap[ m_ROMBank ] + 0x0200 ); |
| 564 | m_bank11->set_base( m_ROMMap[ m_ROMBank ] + 0x0900 ); |
| 565 | m_bank1->set_base( m_ROMMap[ m_ROMBank + 1 ] ); |
| 566 | m_bank4->set_base( m_ROMMap[ m_ROMBank + 1 ] + 0x2000 ); |
| 569 | 567 | } |
| 570 | 568 | |
| 571 | 569 | WRITE8_MEMBER(gb_state::gb_ram_bank_select_mbc1) |
| r20640 | r20641 | |
| 576 | 574 | m_ROMBank = ( m_ROMBank & 0x1F ) | ( data << 5 ); |
| 577 | 575 | |
| 578 | 576 | /* Switch banks */ |
| 579 | | gb_set_mbc1_banks(machine()); |
| 577 | gb_set_mbc1_banks(); |
| 580 | 578 | } |
| 581 | 579 | |
| 582 | 580 | WRITE8_MEMBER(gb_state::gb_ram_bank_select_mbc3) |
| r20640 | r20641 | |
| 590 | 588 | if ( data < 5 ) |
| 591 | 589 | { |
| 592 | 590 | memset( m_MBC3RTCData, m_MBC3RTCMap[m_MBC3RTCBank], 0x2000 ); |
| 593 | | membank( "bank2" )->set_base( m_MBC3RTCData ); |
| 591 | m_bank2->set_base( m_MBC3RTCData ); |
| 594 | 592 | } |
| 595 | 593 | } |
| 596 | 594 | } |
| r20640 | r20641 | |
| 599 | 597 | m_RAMBank = data & 0x3; |
| 600 | 598 | m_MBC3RTCBank = 0xFF; |
| 601 | 599 | /* Switch banks */ |
| 602 | | membank( "bank2" )->set_base( m_RAMMap[m_RAMBank] ); |
| 600 | m_bank2->set_base( m_RAMMap[m_RAMBank] ); |
| 603 | 601 | } |
| 604 | 602 | } |
| 605 | 603 | |
| r20640 | r20641 | |
| 613 | 611 | } |
| 614 | 612 | m_RAMBank = data; |
| 615 | 613 | /* Switch banks */ |
| 616 | | membank ("bank2")->set_base (m_RAMMap[m_RAMBank] ); |
| 614 | m_bank2->set_base( m_RAMMap[m_RAMBank] ); |
| 617 | 615 | } |
| 618 | 616 | |
| 619 | 617 | WRITE8_MEMBER(gb_state::gb_ram_enable) |
| r20640 | r20641 | |
| 626 | 624 | WRITE8_MEMBER(gb_state::gb_mem_mode_select_mbc1) |
| 627 | 625 | { |
| 628 | 626 | m_MBC1Mode = data & 0x1; |
| 629 | | gb_set_mbc1_banks(machine()); |
| 627 | gb_set_mbc1_banks(); |
| 630 | 628 | } |
| 631 | 629 | |
| 632 | 630 | WRITE8_MEMBER(gb_state::gb_mem_mode_select_mbc3) |
| r20640 | r20641 | |
| 653 | 651 | { |
| 654 | 652 | case 0x00: /* Bits 0-3 for rom bank selection */ |
| 655 | 653 | m_ROMBank = ( m_ROMBank & 0xF0 ) | ( data & 0x0F ); |
| 656 | | gb_rom16_4000( machine(), m_ROMMap[m_ROMBank] ); |
| 654 | gb_rom16_4000( m_ROMMap[m_ROMBank] ); |
| 657 | 655 | break; |
| 658 | 656 | case 0x01: /* Bit 4(-7?) for rom bank selection */ |
| 659 | 657 | m_ROMBank = ( m_ROMBank & 0x0F ) | ( ( data & 0x0F ) << 4 ); |
| 660 | | gb_rom16_4000( machine(), m_ROMMap[m_ROMBank] ); |
| 658 | gb_rom16_4000( m_ROMMap[m_ROMBank] ); |
| 661 | 659 | break; |
| 662 | 660 | case 0x04: /* Data to write lo */ |
| 663 | 661 | m_gbTama5Byte = ( m_gbTama5Byte & 0xF0 ) | ( data & 0x0F ); |
| r20640 | r20641 | |
| 707 | 705 | break; |
| 708 | 706 | case 0x0A: /* Are we ready for the next command? */ |
| 709 | 707 | m_MBC3RTCData[0] = 0x01; |
| 710 | | membank( "bank2" )->set_base( m_MBC3RTCData ); |
| 708 | m_bank2->set_base( m_MBC3RTCData ); |
| 711 | 709 | break; |
| 712 | 710 | case 0x0C: /* Data read register lo */ |
| 713 | 711 | m_MBC3RTCData[0] = m_gbTama5Byte & 0x0F; |
| r20640 | r20641 | |
| 733 | 731 | if ( data & 0x40 ) |
| 734 | 732 | { |
| 735 | 733 | m_mmm01_bank_offset = m_mmm01_reg1; |
| 736 | | membank( "bank5" )->set_base( m_ROMMap[ m_mmm01_bank_offset ] ); |
| 737 | | membank( "bank10" )->set_base( m_ROMMap[ m_mmm01_bank_offset ] + 0x0100 ); |
| 738 | | gb_rom16_4000( machine(), m_ROMMap[ m_mmm01_bank_offset + m_mmm01_bank ] ); |
| 734 | m_bank5->set_base( m_ROMMap[ m_mmm01_bank_offset ] ); |
| 735 | m_bank10->set_base( m_ROMMap[ m_mmm01_bank_offset ] + 0x0100 ); |
| 736 | gb_rom16_4000( m_ROMMap[ m_mmm01_bank_offset + m_mmm01_bank ] ); |
| 739 | 737 | } |
| 740 | 738 | } |
| 741 | 739 | |
| r20640 | r20641 | |
| 749 | 747 | { |
| 750 | 748 | m_mmm01_bank = 1; |
| 751 | 749 | } |
| 752 | | gb_rom16_4000( machine(), m_ROMMap[ m_mmm01_bank_offset + m_mmm01_bank ] ); |
| 750 | gb_rom16_4000( m_ROMMap[ m_mmm01_bank_offset + m_mmm01_bank ] ); |
| 753 | 751 | } |
| 754 | 752 | |
| 755 | 753 | WRITE8_MEMBER(gb_state::gb_rom_bank_mmm01_4000_w) |
| r20640 | r20641 | |
| 772 | 770 | |
| 773 | 771 | /* Korean MBC1 variant mapping */ |
| 774 | 772 | |
| 775 | | static void gb_set_mbc1_kor_banks( running_machine &machine ) |
| 773 | void gb_state::gb_set_mbc1_kor_banks() |
| 776 | 774 | { |
| 777 | | gb_state *state = machine.driver_data<gb_state>(); |
| 778 | | if ( state->m_ROMBank & 0x30 ) |
| 775 | if ( m_ROMBank & 0x30 ) |
| 779 | 776 | { |
| 780 | | gb_rom16_0000( machine, state->m_ROMMap[ state->m_ROMBank & 0x30 ] ); |
| 777 | gb_rom16_0000( m_ROMMap[ m_ROMBank & 0x30 ] ); |
| 781 | 778 | } |
| 782 | | gb_rom16_4000( machine, state->m_ROMMap[ state->m_ROMBank ] ); |
| 783 | | state->membank( "bank2" )->set_base( state->m_RAMMap[ state->m_MBC1Mode ? ( state->m_ROMBank >> 5 ) : 0 ] ); |
| 779 | gb_rom16_4000( m_ROMMap[ m_ROMBank ] ); |
| 780 | m_bank2->set_base( m_RAMMap[ m_MBC1Mode ? ( m_ROMBank >> 5 ) : 0 ] ); |
| 784 | 781 | } |
| 785 | 782 | |
| 786 | 783 | WRITE8_MEMBER(gb_state::gb_rom_bank_select_mbc1_kor) |
| r20640 | r20641 | |
| 792 | 789 | |
| 793 | 790 | m_ROMBank = ( m_ROMBank & 0x01F0 ) | data; |
| 794 | 791 | /* Switch banks */ |
| 795 | | gb_set_mbc1_kor_banks(machine()); |
| 792 | gb_set_mbc1_kor_banks(); |
| 796 | 793 | } |
| 797 | 794 | |
| 798 | 795 | WRITE8_MEMBER(gb_state::gb_ram_bank_select_mbc1_kor) |
| r20640 | r20641 | |
| 803 | 800 | m_ROMBank = ( m_ROMBank & 0x0F ) | ( data << 4 ); |
| 804 | 801 | |
| 805 | 802 | /* Switch banks */ |
| 806 | | gb_set_mbc1_kor_banks(machine()); |
| 803 | gb_set_mbc1_kor_banks(); |
| 807 | 804 | } |
| 808 | 805 | |
| 809 | 806 | WRITE8_MEMBER(gb_state::gb_mem_mode_select_mbc1_kor) |
| 810 | 807 | { |
| 811 | 808 | m_MBC1Mode = data & 0x1; |
| 812 | | gb_set_mbc1_kor_banks(machine()); |
| 809 | gb_set_mbc1_kor_banks(); |
| 813 | 810 | } |
| 814 | 811 | |
| 815 | 812 | WRITE8_MEMBER(gb_state::gb_rom_bank_yongyong_2000) |
| 816 | 813 | { |
| 817 | 814 | m_ROMBank = data; |
| 818 | | gb_rom16_4000( machine(), m_ROMMap[m_ROMBank] ); |
| 815 | gb_rom16_4000( m_ROMMap[m_ROMBank] ); |
| 819 | 816 | } |
| 820 | 817 | |
| 821 | 818 | WRITE8_MEMBER(gb_state::gb_rom_bank_lasama_2080) |
| 822 | 819 | { |
| 823 | 820 | // Actual banking? |
| 824 | 821 | m_ROMBank = m_ROMBank00 | ( data & 0x03 ); |
| 825 | | gb_rom16_4000( machine(), m_ROMMap[m_ROMBank] ); |
| 822 | gb_rom16_4000( m_ROMMap[m_ROMBank] ); |
| 826 | 823 | } |
| 827 | 824 | |
| 828 | 825 | WRITE8_MEMBER(gb_state::gb_rom_bank_lasama_6000) |
| r20640 | r20641 | |
| 834 | 831 | if ( ! ( data & 0x80 ) ) |
| 835 | 832 | { |
| 836 | 833 | m_ROMBank00 = ( data & 0x02 ) << 1; |
| 837 | | gb_rom16_0000( machine(), m_ROMMap[m_ROMBank00] ); |
| 834 | gb_rom16_0000( m_ROMMap[m_ROMBank00] ); |
| 838 | 835 | } |
| 839 | 836 | } |
| 840 | 837 | |
| r20640 | r20641 | |
| 845 | 842 | data = 1; |
| 846 | 843 | } |
| 847 | 844 | m_ROMBank = m_ROMBank00 | data; |
| 848 | | gb_rom16_4000( machine(), m_ROMMap[m_ROMBank] ); |
| 845 | gb_rom16_4000( m_ROMMap[m_ROMBank] ); |
| 849 | 846 | } |
| 850 | 847 | |
| 851 | 848 | WRITE8_MEMBER(gb_state::gb_rom_bank_atvracin_3fc0) |
| 852 | 849 | { |
| 853 | 850 | m_ROMBank00 = data * 16; |
| 854 | | gb_rom16_0000( machine(), m_ROMMap[m_ROMBank00] ); |
| 851 | gb_rom16_0000( m_ROMMap[m_ROMBank00] ); |
| 855 | 852 | } |
| 856 | 853 | |
| 857 | 854 | WRITE8_MEMBER(gb_state::gb_io_w) |
| r20640 | r20641 | |
| 863 | 860 | case 0x00: /* JOYP - Joypad */ |
| 864 | 861 | JOYPAD = 0xCF | data; |
| 865 | 862 | if (!(data & 0x20)) |
| 866 | | JOYPAD &= (ioport("INPUTS")->read() >> 4) | 0xF0; |
| 863 | JOYPAD &= (m_inputs->read() >> 4) | 0xF0; |
| 867 | 864 | if (!(data & 0x10)) |
| 868 | | JOYPAD &= ioport("INPUTS")->read() | 0xF0; |
| 865 | JOYPAD &= m_inputs->read() | 0xF0; |
| 869 | 866 | return; |
| 870 | 867 | case 0x01: /* SB - Serial transfer data */ |
| 871 | 868 | break; |
| r20640 | r20641 | |
| 880 | 877 | case 0x81: /* enabled & internal clock */ |
| 881 | 878 | SIODATA = 0xFF; |
| 882 | 879 | m_SIOCount = 8; |
| 883 | | m_gb_serial_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(512), 0, machine().device<cpu_device>("maincpu")->cycles_to_attotime(512)); |
| 880 | m_gb_serial_timer->adjust(m_maincpu->cycles_to_attotime(512), 0, m_maincpu->cycles_to_attotime(512)); |
| 884 | 881 | m_gb_serial_timer->enable( 1 ); |
| 885 | 882 | break; |
| 886 | 883 | } |
| r20640 | r20641 | |
| 888 | 885 | case 0x04: /* DIV - Divider register */ |
| 889 | 886 | /* Force increment of TIMECNT register */ |
| 890 | 887 | if ( m_divcount >= 16 ) |
| 891 | | gb_timer_increment(machine()); |
| 888 | gb_timer_increment(); |
| 892 | 889 | m_divcount = 0; |
| 893 | 890 | return; |
| 894 | 891 | case 0x05: /* TIMA - Timer counter */ |
| r20640 | r20641 | |
| 913 | 910 | /* Check if TIMECNT should be incremented */ |
| 914 | 911 | if ( ( m_divcount & ( m_shift_cycles - 1 ) ) >= ( m_shift_cycles >> 1 ) ) |
| 915 | 912 | { |
| 916 | | gb_timer_increment(machine()); |
| 913 | gb_timer_increment(); |
| 917 | 914 | } |
| 918 | 915 | } |
| 919 | 916 | m_shift = timer_shifts[data & 0x03]; |
| r20640 | r20641 | |
| 933 | 930 | if ( offset == 0x10 ) |
| 934 | 931 | { |
| 935 | 932 | /* disable BIOS ROM */ |
| 936 | | gb_rom16_0000( machine(), m_ROMMap[m_ROMBank00] ); |
| 933 | gb_rom16_0000( m_ROMMap[m_ROMBank00] ); |
| 937 | 934 | } |
| 938 | 935 | else |
| 939 | 936 | { |
| r20640 | r20641 | |
| 988 | 985 | m_sgb_bitcount = 0; |
| 989 | 986 | m_sgb_start = 1; |
| 990 | 987 | m_sgb_rest = 0; |
| 991 | | JOYPAD = 0x0F & ((ioport("INPUTS")->read() >> 4) | ioport("INPUTS")->read() | 0xF0); |
| 988 | JOYPAD = 0x0F & ((m_inputs->read() >> 4) | m_inputs->read() | 0xF0); |
| 992 | 989 | break; |
| 993 | 990 | case 0x10: /* data true */ |
| 994 | 991 | if (m_sgb_rest) |
| r20640 | r20641 | |
| 1012 | 1009 | } |
| 1013 | 1010 | m_sgb_rest = 0; |
| 1014 | 1011 | } |
| 1015 | | JOYPAD = 0x1F & ((ioport("INPUTS")->read() >> 4) | 0xF0); |
| 1012 | JOYPAD = 0x1F & ((m_inputs->read() >> 4) | 0xF0); |
| 1016 | 1013 | break; |
| 1017 | 1014 | case 0x20: /* data false */ |
| 1018 | 1015 | if (m_sgb_rest) |
| r20640 | r20641 | |
| 1316 | 1313 | break; |
| 1317 | 1314 | case 0x0B: /* PAL_TRN */ |
| 1318 | 1315 | { |
| 1319 | | UINT8 *gb_vram = gb_get_vram_ptr(machine()); |
| 1320 | 1316 | UINT16 I, col; |
| 1321 | 1317 | |
| 1322 | 1318 | for( I = 0; I < 2048; I++ ) |
| 1323 | 1319 | { |
| 1324 | | col = ( gb_vram[ 0x0800 + (I*2) + 1 ] << 8 ) | gb_vram[ 0x0800 + (I*2) ]; |
| 1320 | col = ( m_lcd.gb_vram_ptr[ 0x0800 + (I*2) + 1 ] << 8 ) | m_lcd.gb_vram_ptr[ 0x0800 + (I*2) ]; |
| 1325 | 1321 | m_sgb_pal_data[I] = col; |
| 1326 | 1322 | } |
| 1327 | 1323 | } |
| r20640 | r20641 | |
| 1352 | 1348 | break; |
| 1353 | 1349 | case 0x13: /* CHR_TRN */ |
| 1354 | 1350 | if( sgb_data[1] & 0x1 ) |
| 1355 | | memcpy( m_sgb_tile_data + 4096, gb_get_vram_ptr(machine()) + 0x0800, 4096 ); |
| 1351 | memcpy( m_sgb_tile_data + 4096, m_lcd.gb_vram_ptr + 0x0800, 4096 ); |
| 1356 | 1352 | else |
| 1357 | | memcpy( m_sgb_tile_data, gb_get_vram_ptr(machine()) + 0x0800, 4096 ); |
| 1353 | memcpy( m_sgb_tile_data, m_lcd.gb_vram_ptr + 0x0800, 4096 ); |
| 1358 | 1354 | break; |
| 1359 | 1355 | case 0x14: /* PCT_TRN */ |
| 1360 | 1356 | { |
| 1361 | 1357 | int I; |
| 1362 | 1358 | UINT16 col; |
| 1363 | | UINT8 *gb_vram = gb_get_vram_ptr(machine()); |
| 1364 | 1359 | if( m_sgb_hack ) |
| 1365 | 1360 | { |
| 1366 | | memcpy( m_sgb_tile_map, gb_vram + 0x1000, 2048 ); |
| 1361 | memcpy( m_sgb_tile_map, m_lcd.gb_vram_ptr + 0x1000, 2048 ); |
| 1367 | 1362 | for( I = 0; I < 64; I++ ) |
| 1368 | 1363 | { |
| 1369 | | col = ( gb_vram[ 0x0800 + (I*2) + 1 ] << 8 ) | gb_vram[ 0x0800 + (I*2) ]; |
| 1364 | col = ( m_lcd.gb_vram_ptr[ 0x0800 + (I*2) + 1 ] << 8 ) | m_lcd.gb_vram_ptr[ 0x0800 + (I*2) ]; |
| 1370 | 1365 | m_sgb_pal[SGB_BORDER_PAL_OFFSET + I] = col; |
| 1371 | 1366 | } |
| 1372 | 1367 | } |
| 1373 | 1368 | else /* Do things normally */ |
| 1374 | 1369 | { |
| 1375 | | memcpy( m_sgb_tile_map, gb_vram + 0x0800, 2048 ); |
| 1370 | memcpy( m_sgb_tile_map, m_lcd.gb_vram_ptr + 0x0800, 2048 ); |
| 1376 | 1371 | for( I = 0; I < 64; I++ ) |
| 1377 | 1372 | { |
| 1378 | | col = ( gb_vram[ 0x1000 + (I*2) + 1 ] << 8 ) | gb_vram[ 0x1000 + (I*2) ]; |
| 1373 | col = ( m_lcd.gb_vram_ptr[ 0x1000 + (I*2) + 1 ] << 8 ) | m_lcd.gb_vram_ptr[ 0x1000 + (I*2) ]; |
| 1379 | 1374 | m_sgb_pal[SGB_BORDER_PAL_OFFSET + I] = col; |
| 1380 | 1375 | } |
| 1381 | 1376 | } |
| 1382 | 1377 | } |
| 1383 | 1378 | break; |
| 1384 | 1379 | case 0x15: /* ATTR_TRN */ |
| 1385 | | memcpy( m_sgb_atf_data, gb_get_vram_ptr(machine()) + 0x0800, 4050 ); |
| 1380 | memcpy( m_sgb_atf_data, m_lcd.gb_vram_ptr + 0x0800, 4050 ); |
| 1386 | 1381 | break; |
| 1387 | 1382 | case 0x16: /* ATTR_SET */ |
| 1388 | 1383 | { |
| r20640 | r20641 | |
| 1439 | 1434 | } |
| 1440 | 1435 | m_sgb_rest = 0; |
| 1441 | 1436 | } |
| 1442 | | JOYPAD = 0x2F & (ioport("INPUTS")->read() | 0xF0); |
| 1437 | JOYPAD = 0x2F & (m_inputs->read() | 0xF0); |
| 1443 | 1438 | break; |
| 1444 | 1439 | case 0x30: /* rest condition */ |
| 1445 | 1440 | if (m_sgb_start) |
| r20640 | r20641 | |
| 2044 | 2039 | { |
| 2045 | 2040 | SIOCONT &= 0x7F; |
| 2046 | 2041 | m_gb_serial_timer->enable( 0 ); |
| 2047 | | machine().device("maincpu")->execute().set_input_line(SIO_INT, ASSERT_LINE); |
| 2042 | m_maincpu->set_input_line(SIO_INT, ASSERT_LINE); |
| 2048 | 2043 | } |
| 2049 | 2044 | } |
| 2050 | 2045 | |
| 2051 | | INLINE void gb_timer_check_irq( running_machine &machine ) |
| 2046 | void gb_state::gb_timer_check_irq() |
| 2052 | 2047 | { |
| 2053 | | gb_state *state = machine.driver_data<gb_state>(); |
| 2054 | | state->m_reloading = 0; |
| 2055 | | if ( state->m_triggering_irq ) |
| 2048 | m_reloading = 0; |
| 2049 | if ( m_triggering_irq ) |
| 2056 | 2050 | { |
| 2057 | | state->m_triggering_irq = 0; |
| 2058 | | if ( state->TIMECNT == 0 ) |
| 2051 | m_triggering_irq = 0; |
| 2052 | if ( TIMECNT == 0 ) |
| 2059 | 2053 | { |
| 2060 | | state->TIMECNT = state->TIMEMOD; |
| 2061 | | machine.device("maincpu")->execute().set_input_line(TIM_INT, ASSERT_LINE ); |
| 2062 | | state->m_reloading = 1; |
| 2054 | TIMECNT = TIMEMOD; |
| 2055 | m_maincpu->set_input_line(TIM_INT, ASSERT_LINE ); |
| 2056 | m_reloading = 1; |
| 2063 | 2057 | } |
| 2064 | 2058 | } |
| 2065 | 2059 | } |
| 2066 | 2060 | |
| 2067 | | static void gb_timer_increment( running_machine &machine ) |
| 2061 | void gb_state::gb_timer_increment() |
| 2068 | 2062 | { |
| 2069 | | gb_state *state = machine.driver_data<gb_state>(); |
| 2070 | | gb_timer_check_irq(machine); |
| 2063 | gb_timer_check_irq(); |
| 2071 | 2064 | |
| 2072 | | state->TIMECNT += 1; |
| 2073 | | if ( state->TIMECNT == 0 ) |
| 2065 | TIMECNT += 1; |
| 2066 | if ( TIMECNT == 0 ) |
| 2074 | 2067 | { |
| 2075 | | state->m_triggering_irq = 1; |
| 2068 | m_triggering_irq = 1; |
| 2076 | 2069 | } |
| 2077 | 2070 | } |
| 2078 | 2071 | |
| 2079 | | void gb_timer_callback(lr35902_cpu_device *device, int cycles) |
| 2072 | WRITE8_MEMBER( gb_state::gb_timer_callback ) |
| 2080 | 2073 | { |
| 2081 | | gb_state *state = device->machine().driver_data<gb_state>(); |
| 2082 | | UINT16 old_gb_divcount = state->m_divcount; |
| 2083 | | state->m_divcount += cycles; |
| 2074 | UINT16 old_gb_divcount = m_divcount; |
| 2075 | m_divcount += data; |
| 2084 | 2076 | |
| 2085 | | gb_timer_check_irq(device->machine()); |
| 2077 | gb_timer_check_irq(); |
| 2086 | 2078 | |
| 2087 | | if ( state->TIMEFRQ & 0x04 ) |
| 2079 | if ( TIMEFRQ & 0x04 ) |
| 2088 | 2080 | { |
| 2089 | | UINT16 old_count = old_gb_divcount >> state->m_shift; |
| 2090 | | UINT16 new_count = state->m_divcount >> state->m_shift; |
| 2091 | | if ( cycles > state->m_shift_cycles ) |
| 2081 | UINT16 old_count = old_gb_divcount >> m_shift; |
| 2082 | UINT16 new_count = m_divcount >> m_shift; |
| 2083 | if ( data > m_shift_cycles ) |
| 2092 | 2084 | { |
| 2093 | | gb_timer_increment(device->machine()); |
| 2085 | gb_timer_increment(); |
| 2094 | 2086 | old_count++; |
| 2095 | 2087 | } |
| 2096 | 2088 | if ( new_count != old_count ) |
| 2097 | 2089 | { |
| 2098 | | gb_timer_increment(device->machine()); |
| 2090 | gb_timer_increment(); |
| 2099 | 2091 | } |
| 2100 | | if ( new_count << state->m_shift < state->m_divcount ) |
| 2092 | if ( new_count << m_shift < m_divcount ) |
| 2101 | 2093 | { |
| 2102 | | gb_timer_check_irq(device->machine()); |
| 2094 | gb_timer_check_irq(); |
| 2103 | 2095 | } |
| 2104 | 2096 | } |
| 2105 | 2097 | } |
| r20640 | r20641 | |
| 2112 | 2104 | machine().device<lr35902_cpu_device>(":maincpu")->set_speed( data ); |
| 2113 | 2105 | return; |
| 2114 | 2106 | case 0x10: /* BFF - Bios disable */ |
| 2115 | | gb_rom16_0000( machine(), m_ROMMap[m_ROMBank00] ); |
| 2107 | gb_rom16_0000( m_ROMMap[m_ROMBank00] ); |
| 2116 | 2108 | return; |
| 2117 | 2109 | case 0x16: /* RP - Infrared port */ |
| 2118 | 2110 | break; |
| r20640 | r20641 | |
| 2120 | 2112 | m_GBC_RAMBank = data & 0x7; |
| 2121 | 2113 | if ( ! m_GBC_RAMBank ) |
| 2122 | 2114 | m_GBC_RAMBank = 1; |
| 2123 | | membank ("bank3")->set_base (m_GBC_RAMMap[m_GBC_RAMBank]); |
| 2115 | m_bank3->set_base(m_GBC_RAMMap[m_GBC_RAMBank]); |
| 2124 | 2116 | break; |
| 2125 | 2117 | default: |
| 2126 | 2118 | break; |
| r20640 | r20641 | |
| 2162 | 2154 | MACHINE_RESET_MEMBER(gb_state,megaduck) |
| 2163 | 2155 | { |
| 2164 | 2156 | /* We may have to add some more stuff here, if not then it can be merged back into gb */ |
| 2165 | | gb_init(machine()); |
| 2157 | gb_init(); |
| 2166 | 2158 | |
| 2167 | | gb_video_reset( machine(), GB_VIDEO_DMG ); |
| 2159 | gb_video_reset( GB_VIDEO_DMG ); |
| 2168 | 2160 | } |
| 2169 | 2161 | |
| 2170 | 2162 | /* |
| r20640 | r20641 | |
| 2280 | 2272 | m_ROMBank = data & m_ROMMask; |
| 2281 | 2273 | |
| 2282 | 2274 | /* Switch banks */ |
| 2283 | | membank ("bank1")->set_base (m_ROMMap[m_ROMBank]); |
| 2275 | m_bank1->set_base(m_ROMMap[m_ROMBank]); |
| 2284 | 2276 | } |
| 2285 | 2277 | } |
| 2286 | 2278 | |
| r20640 | r20641 | |
| 2291 | 2283 | m_ROMBank = (data << 1) & m_ROMMask; |
| 2292 | 2284 | |
| 2293 | 2285 | /* Switch banks */ |
| 2294 | | membank( "bank10" )->set_base( m_ROMMap[m_ROMBank]); |
| 2295 | | membank( "bank1" )->set_base( m_ROMMap[m_ROMBank + 1]); |
| 2286 | m_bank10->set_base( m_ROMMap[m_ROMBank]); |
| 2287 | m_bank1->set_base( m_ROMMap[m_ROMBank + 1]); |
| 2296 | 2288 | } |
| 2297 | 2289 | } |
| 2298 | 2290 | |
trunk/src/mess/video/gb.c
| r20640 | r20641 | |
| 18 | 18 | #include "cpu/lr35902/lr35902.h" |
| 19 | 19 | #include "includes/gb.h" |
| 20 | 20 | |
| 21 | | #define LCDCONT state->m_lcd.gb_vid_regs[0x00] /* LCD control register */ |
| 22 | | #define LCDSTAT state->m_lcd.gb_vid_regs[0x01] /* LCD status register */ |
| 23 | | #define SCROLLY state->m_lcd.gb_vid_regs[0x02] /* Starting Y position of the background */ |
| 24 | | #define SCROLLX state->m_lcd.gb_vid_regs[0x03] /* Starting X position of the background */ |
| 25 | | #define CURLINE state->m_lcd.gb_vid_regs[0x04] /* Current screen line being scanned */ |
| 26 | | #define CMPLINE state->m_lcd.gb_vid_regs[0x05] /* Gen. int. when scan reaches this line */ |
| 27 | | #define BGRDPAL state->m_lcd.gb_vid_regs[0x07] /* Background palette */ |
| 28 | | #define SPR0PAL state->m_lcd.gb_vid_regs[0x08] /* Sprite palette #0 */ |
| 29 | | #define SPR1PAL state->m_lcd.gb_vid_regs[0x09] /* Sprite palette #1 */ |
| 30 | | #define WNDPOSY state->m_lcd.gb_vid_regs[0x0A] /* Window Y position */ |
| 31 | | #define WNDPOSX state->m_lcd.gb_vid_regs[0x0B] /* Window X position */ |
| 32 | | #define KEY1 state->m_lcd.gb_vid_regs[0x0D] /* Prepare speed switch */ |
| 33 | | #define HDMA1 state->m_lcd.gb_vid_regs[0x11] /* HDMA source high byte */ |
| 34 | | #define HDMA2 state->m_lcd.gb_vid_regs[0x12] /* HDMA source low byte */ |
| 35 | | #define HDMA3 state->m_lcd.gb_vid_regs[0x13] /* HDMA destination high byte */ |
| 36 | | #define HDMA4 state->m_lcd.gb_vid_regs[0x14] /* HDMA destination low byte */ |
| 37 | | #define HDMA5 state->m_lcd.gb_vid_regs[0x15] /* HDMA length/mode/start */ |
| 38 | | #define GBCBCPS state->m_lcd.gb_vid_regs[0x28] /* Backgound palette spec */ |
| 39 | | #define GBCBCPD state->m_lcd.gb_vid_regs[0x29] /* Backgound palette data */ |
| 40 | | #define GBCOCPS state->m_lcd.gb_vid_regs[0x2A] /* Object palette spec */ |
| 41 | | #define GBCOCPD state->m_lcd.gb_vid_regs[0x2B] /* Object palette data */ |
| 21 | #define LCDCONT m_lcd.gb_vid_regs[0x00] /* LCD control register */ |
| 22 | #define LCDSTAT m_lcd.gb_vid_regs[0x01] /* LCD status register */ |
| 23 | #define SCROLLY m_lcd.gb_vid_regs[0x02] /* Starting Y position of the background */ |
| 24 | #define SCROLLX m_lcd.gb_vid_regs[0x03] /* Starting X position of the background */ |
| 25 | #define CURLINE m_lcd.gb_vid_regs[0x04] /* Current screen line being scanned */ |
| 26 | #define CMPLINE m_lcd.gb_vid_regs[0x05] /* Gen. int. when scan reaches this line */ |
| 27 | #define BGRDPAL m_lcd.gb_vid_regs[0x07] /* Background palette */ |
| 28 | #define SPR0PAL m_lcd.gb_vid_regs[0x08] /* Sprite palette #0 */ |
| 29 | #define SPR1PAL m_lcd.gb_vid_regs[0x09] /* Sprite palette #1 */ |
| 30 | #define WNDPOSY m_lcd.gb_vid_regs[0x0A] /* Window Y position */ |
| 31 | #define WNDPOSX m_lcd.gb_vid_regs[0x0B] /* Window X position */ |
| 32 | #define KEY1 m_lcd.gb_vid_regs[0x0D] /* Prepare speed switch */ |
| 33 | #define HDMA1 m_lcd.gb_vid_regs[0x11] /* HDMA source high byte */ |
| 34 | #define HDMA2 m_lcd.gb_vid_regs[0x12] /* HDMA source low byte */ |
| 35 | #define HDMA3 m_lcd.gb_vid_regs[0x13] /* HDMA destination high byte */ |
| 36 | #define HDMA4 m_lcd.gb_vid_regs[0x14] /* HDMA destination low byte */ |
| 37 | #define HDMA5 m_lcd.gb_vid_regs[0x15] /* HDMA length/mode/start */ |
| 38 | #define GBCBCPS m_lcd.gb_vid_regs[0x28] /* Backgound palette spec */ |
| 39 | #define GBCBCPD m_lcd.gb_vid_regs[0x29] /* Backgound palette data */ |
| 40 | #define GBCOCPS m_lcd.gb_vid_regs[0x2A] /* Object palette spec */ |
| 41 | #define GBCOCPD m_lcd.gb_vid_regs[0x2B] /* Object palette data */ |
| 42 | 42 | |
| 43 | 43 | enum { |
| 44 | 44 | UNLOCKED=0, |
| r20640 | r20641 | |
| 46 | 46 | }; |
| 47 | 47 | |
| 48 | 48 | |
| 49 | | /* Prototypes */ |
| 50 | | |
| 51 | | |
| 52 | | static void gb_lcd_switch_on( running_machine &machine ); |
| 53 | | |
| 54 | 49 | static const unsigned char palette[] = |
| 55 | 50 | { |
| 56 | 51 | /* Simple black and white palette */ |
| r20640 | r20641 | |
| 156 | 151 | Select which sprites should be drawn for the current scanline and return the |
| 157 | 152 | number of sprites selected. |
| 158 | 153 | */ |
| 159 | | static void gb_select_sprites( gb_state *state ) |
| 154 | void gb_state::gb_select_sprites() |
| 160 | 155 | { |
| 161 | 156 | int i, /*yindex,*/ line, height; |
| 162 | | UINT8 *oam = state->m_lcd.gb_oam->base() + 39 * 4; |
| 157 | UINT8 *oam = m_lcd.gb_oam->base() + 39 * 4; |
| 163 | 158 | |
| 164 | | state->m_lcd.sprCount = 0; |
| 159 | m_lcd.sprCount = 0; |
| 165 | 160 | |
| 166 | 161 | /* If video hardware is enabled and sprites are enabled */ |
| 167 | 162 | if ( ( LCDCONT & 0x80 ) && ( LCDCONT & 0x02 ) ) |
| r20640 | r20641 | |
| 176 | 171 | height = 8; |
| 177 | 172 | } |
| 178 | 173 | |
| 179 | | //yindex = state->m_lcd.current_line; |
| 180 | | line = state->m_lcd.current_line + 16; |
| 174 | //yindex = m_lcd.current_line; |
| 175 | line = m_lcd.current_line + 16; |
| 181 | 176 | |
| 182 | 177 | for( i = 39; i >= 0; i-- ) |
| 183 | 178 | { |
| r20640 | r20641 | |
| 185 | 180 | { |
| 186 | 181 | /* We limit the sprite count to max 10 here; |
| 187 | 182 | proper games should not exceed this... */ |
| 188 | | if ( state->m_lcd.sprCount < 10 ) |
| 183 | if ( m_lcd.sprCount < 10 ) |
| 189 | 184 | { |
| 190 | | state->m_lcd.sprite[state->m_lcd.sprCount] = i; |
| 191 | | state->m_lcd.sprCount++; |
| 185 | m_lcd.sprite[m_lcd.sprCount] = i; |
| 186 | m_lcd.sprCount++; |
| 192 | 187 | } |
| 193 | 188 | } |
| 194 | 189 | oam -= 4; |
| r20640 | r20641 | |
| 196 | 191 | } |
| 197 | 192 | } |
| 198 | 193 | |
| 199 | | INLINE void gb_update_sprites ( running_machine &machine ) |
| 194 | void gb_state::gb_update_sprites() |
| 200 | 195 | { |
| 201 | | gb_state *state = machine.driver_data<gb_state>(); |
| 202 | | bitmap_ind16 &bitmap = state->m_bitmap; |
| 196 | bitmap_ind16 &bitmap = m_bitmap; |
| 203 | 197 | UINT8 height, tilemask, line, *oam, *vram; |
| 204 | 198 | int i, yindex; |
| 205 | 199 | |
| r20640 | r20641 | |
| 214 | 208 | tilemask = 0xFF; |
| 215 | 209 | } |
| 216 | 210 | |
| 217 | | yindex = state->m_lcd.current_line; |
| 218 | | line = state->m_lcd.current_line + 16; |
| 211 | yindex = m_lcd.current_line; |
| 212 | line = m_lcd.current_line + 16; |
| 219 | 213 | |
| 220 | | oam = state->m_lcd.gb_oam->base() + 39 * 4; |
| 221 | | vram = state->m_lcd.gb_vram->base(); |
| 214 | oam = m_lcd.gb_oam->base() + 39 * 4; |
| 215 | vram = m_lcd.gb_vram->base(); |
| 222 | 216 | for (i = 39; i >= 0; i--) |
| 223 | 217 | { |
| 224 | 218 | /* if sprite is on current line && x-coordinate && x-coordinate is < 168 */ |
| r20640 | r20641 | |
| 228 | 222 | UINT8 bit, *spal; |
| 229 | 223 | int xindex, adr; |
| 230 | 224 | |
| 231 | | spal = (oam[3] & 0x10) ? state->m_lcd.gb_spal1 : state->m_lcd.gb_spal0; |
| 225 | spal = (oam[3] & 0x10) ? m_lcd.gb_spal1 : m_lcd.gb_spal0; |
| 232 | 226 | xindex = oam[1] - 8; |
| 233 | 227 | if (oam[3] & 0x40) /* flip y ? */ |
| 234 | 228 | { |
| r20640 | r20641 | |
| 246 | 240 | for (bit = 0; bit < 8; bit++, xindex++) |
| 247 | 241 | { |
| 248 | 242 | register int colour = ((data & 0x0100) ? 2 : 0) | ((data & 0x0001) ? 1 : 0); |
| 249 | | if (colour && !state->m_lcd.bg_zbuf[xindex] && xindex >= 0 && xindex < 160) |
| 243 | if (colour && !m_lcd.bg_zbuf[xindex] && xindex >= 0 && xindex < 160) |
| 250 | 244 | gb_plot_pixel(bitmap, xindex, yindex, spal[colour]); |
| 251 | 245 | data >>= 1; |
| 252 | 246 | } |
| r20640 | r20641 | |
| 264 | 258 | for (bit = 0; bit < 8 && xindex < 160; bit++, xindex++) |
| 265 | 259 | { |
| 266 | 260 | register int colour = ((data & 0x8000) ? 2 : 0) | ((data & 0x0080) ? 1 : 0); |
| 267 | | if (colour && !state->m_lcd.bg_zbuf[xindex] && xindex >= 0 && xindex < 160) |
| 261 | if (colour && !m_lcd.bg_zbuf[xindex] && xindex >= 0 && xindex < 160) |
| 268 | 262 | gb_plot_pixel(bitmap, xindex, yindex, spal[colour]); |
| 269 | 263 | data <<= 1; |
| 270 | 264 | } |
| r20640 | r20641 | |
| 284 | 278 | } |
| 285 | 279 | } |
| 286 | 280 | |
| 287 | | static void gb_update_scanline( running_machine &machine ) |
| 281 | void gb_state::gb_update_scanline() |
| 288 | 282 | { |
| 289 | | gb_state *state = machine.driver_data<gb_state>(); |
| 290 | | bitmap_ind16 &bitmap = state->m_bitmap; |
| 283 | bitmap_ind16 &bitmap = m_bitmap; |
| 291 | 284 | |
| 292 | 285 | g_profiler.start(PROFILER_VIDEO); |
| 293 | 286 | |
| r20640 | r20641 | |
| 295 | 288 | if ( ( LCDSTAT & 0x03 ) == 0x03 ) |
| 296 | 289 | { |
| 297 | 290 | /* Calculate number of pixels to render based on time still left on the timer */ |
| 298 | | UINT32 cycles_to_go = machine.device<cpu_device>("maincpu")->attotime_to_cycles(state->m_lcd.lcd_timer ->remaining( ) ); |
| 291 | UINT32 cycles_to_go = m_maincpu->attotime_to_cycles(m_lcd.lcd_timer->remaining( ) ); |
| 299 | 292 | int l = 0; |
| 300 | 293 | |
| 301 | | if ( state->m_lcd.start_x < 0 ) |
| 294 | if ( m_lcd.start_x < 0 ) |
| 302 | 295 | { |
| 303 | 296 | /* Window is enabled if the hardware says so AND the current scanline is |
| 304 | 297 | * within the window AND the window X coordinate is <=166 */ |
| 305 | | state->m_lcd.layer[1].enabled = ( ( LCDCONT & 0x20 ) && ( state->m_lcd.current_line >= WNDPOSY ) && ( WNDPOSX <= 166 ) ) ? 1 : 0; |
| 298 | m_lcd.layer[1].enabled = ( ( LCDCONT & 0x20 ) && ( m_lcd.current_line >= WNDPOSY ) && ( WNDPOSX <= 166 ) ) ? 1 : 0; |
| 306 | 299 | |
| 307 | 300 | /* BG is enabled if the hardware says so AND (window_off OR (window_on |
| 308 | 301 | * AND window's X position is >=7 ) ) */ |
| 309 | | state->m_lcd.layer[0].enabled = ( ( LCDCONT & 0x01 ) && ( ( ! state->m_lcd.layer[1].enabled ) || ( state->m_lcd.layer[1].enabled && ( WNDPOSX >= 7 ) ) ) ) ? 1 : 0; |
| 302 | m_lcd.layer[0].enabled = ( ( LCDCONT & 0x01 ) && ( ( ! m_lcd.layer[1].enabled ) || ( m_lcd.layer[1].enabled && ( WNDPOSX >= 7 ) ) ) ) ? 1 : 0; |
| 310 | 303 | |
| 311 | | if ( state->m_lcd.layer[0].enabled ) |
| 304 | if ( m_lcd.layer[0].enabled ) |
| 312 | 305 | { |
| 313 | | state->m_lcd.layer[0].bgline = ( SCROLLY + state->m_lcd.current_line ) & 0xFF; |
| 314 | | state->m_lcd.layer[0].bg_map = state->m_lcd.gb_bgdtab; |
| 315 | | state->m_lcd.layer[0].bg_tiles = state->m_lcd.gb_chrgen; |
| 316 | | state->m_lcd.layer[0].xindex = SCROLLX >> 3; |
| 317 | | state->m_lcd.layer[0].xshift = SCROLLX & 7; |
| 318 | | state->m_lcd.layer[0].xstart = 0; |
| 319 | | state->m_lcd.layer[0].xend = 160; |
| 306 | m_lcd.layer[0].bgline = ( SCROLLY + m_lcd.current_line ) & 0xFF; |
| 307 | m_lcd.layer[0].bg_map = m_lcd.gb_bgdtab; |
| 308 | m_lcd.layer[0].bg_tiles = m_lcd.gb_chrgen; |
| 309 | m_lcd.layer[0].xindex = SCROLLX >> 3; |
| 310 | m_lcd.layer[0].xshift = SCROLLX & 7; |
| 311 | m_lcd.layer[0].xstart = 0; |
| 312 | m_lcd.layer[0].xend = 160; |
| 320 | 313 | } |
| 321 | 314 | |
| 322 | | if ( state->m_lcd.layer[1].enabled ) |
| 315 | if ( m_lcd.layer[1].enabled ) |
| 323 | 316 | { |
| 324 | 317 | int xpos; |
| 325 | 318 | |
| r20640 | r20641 | |
| 327 | 320 | if ( xpos < 0 ) |
| 328 | 321 | xpos = 0; |
| 329 | 322 | |
| 330 | | state->m_lcd.layer[1].bgline = state->m_lcd.window_lines_drawn; |
| 331 | | state->m_lcd.layer[1].bg_map = state->m_lcd.gb_wndtab; |
| 332 | | state->m_lcd.layer[1].bg_tiles = state->m_lcd.gb_chrgen; |
| 333 | | state->m_lcd.layer[1].xindex = 0; |
| 334 | | state->m_lcd.layer[1].xshift = 0; |
| 335 | | state->m_lcd.layer[1].xstart = xpos; |
| 336 | | state->m_lcd.layer[1].xend = 160; |
| 337 | | state->m_lcd.layer[0].xend = xpos; |
| 323 | m_lcd.layer[1].bgline = m_lcd.window_lines_drawn; |
| 324 | m_lcd.layer[1].bg_map = m_lcd.gb_wndtab; |
| 325 | m_lcd.layer[1].bg_tiles = m_lcd.gb_chrgen; |
| 326 | m_lcd.layer[1].xindex = 0; |
| 327 | m_lcd.layer[1].xshift = 0; |
| 328 | m_lcd.layer[1].xstart = xpos; |
| 329 | m_lcd.layer[1].xend = 160; |
| 330 | m_lcd.layer[0].xend = xpos; |
| 338 | 331 | } |
| 339 | | state->m_lcd.start_x = 0; |
| 332 | m_lcd.start_x = 0; |
| 340 | 333 | } |
| 341 | 334 | |
| 342 | 335 | if ( cycles_to_go < 160 ) |
| 343 | 336 | { |
| 344 | | state->m_lcd.end_x = MIN(160 - cycles_to_go,160); |
| 337 | m_lcd.end_x = MIN(160 - cycles_to_go,160); |
| 345 | 338 | /* Draw empty pixels when the background is disabled */ |
| 346 | 339 | if ( ! ( LCDCONT & 0x01 ) ) |
| 347 | 340 | { |
| 348 | | rectangle r(state->m_lcd.start_x, state->m_lcd.end_x - 1, state->m_lcd.current_line, state->m_lcd.current_line); |
| 349 | | bitmap.fill(state->m_lcd.gb_bpal[0], r ); |
| 341 | rectangle r(m_lcd.start_x, m_lcd.end_x - 1, m_lcd.current_line, m_lcd.current_line); |
| 342 | bitmap.fill(m_lcd.gb_bpal[0], r ); |
| 350 | 343 | } |
| 351 | 344 | while ( l < 2 ) |
| 352 | 345 | { |
| r20640 | r20641 | |
| 354 | 347 | UINT16 data; |
| 355 | 348 | int i, tile_index; |
| 356 | 349 | |
| 357 | | if ( ! state->m_lcd.layer[l].enabled ) |
| 350 | if ( ! m_lcd.layer[l].enabled ) |
| 358 | 351 | { |
| 359 | 352 | l++; |
| 360 | 353 | continue; |
| 361 | 354 | } |
| 362 | | map = state->m_lcd.layer[l].bg_map + ( ( state->m_lcd.layer[l].bgline << 2 ) & 0x3E0 ); |
| 363 | | tiles = state->m_lcd.layer[l].bg_tiles + ( ( state->m_lcd.layer[l].bgline & 7 ) << 1 ); |
| 364 | | xindex = state->m_lcd.start_x; |
| 365 | | if ( xindex < state->m_lcd.layer[l].xstart ) |
| 366 | | xindex = state->m_lcd.layer[l].xstart; |
| 367 | | i = state->m_lcd.end_x; |
| 368 | | if ( i > state->m_lcd.layer[l].xend ) |
| 369 | | i = state->m_lcd.layer[l].xend; |
| 355 | map = m_lcd.layer[l].bg_map + ( ( m_lcd.layer[l].bgline << 2 ) & 0x3E0 ); |
| 356 | tiles = m_lcd.layer[l].bg_tiles + ( ( m_lcd.layer[l].bgline & 7 ) << 1 ); |
| 357 | xindex = m_lcd.start_x; |
| 358 | if ( xindex < m_lcd.layer[l].xstart ) |
| 359 | xindex = m_lcd.layer[l].xstart; |
| 360 | i = m_lcd.end_x; |
| 361 | if ( i > m_lcd.layer[l].xend ) |
| 362 | i = m_lcd.layer[l].xend; |
| 370 | 363 | i = i - xindex; |
| 371 | 364 | |
| 372 | | tile_index = ( map[ state->m_lcd.layer[l].xindex ] ^ state->m_lcd.gb_tile_no_mod ) * 16; |
| 365 | tile_index = ( map[ m_lcd.layer[l].xindex ] ^ m_lcd.gb_tile_no_mod ) * 16; |
| 373 | 366 | data = tiles[ tile_index ] | ( tiles[ tile_index+1 ] << 8 ); |
| 374 | | data <<= state->m_lcd.layer[l].xshift; |
| 367 | data <<= m_lcd.layer[l].xshift; |
| 375 | 368 | |
| 376 | 369 | while ( i > 0 ) |
| 377 | 370 | { |
| 378 | | while ( ( state->m_lcd.layer[l].xshift < 8 ) && i ) |
| 371 | while ( ( m_lcd.layer[l].xshift < 8 ) && i ) |
| 379 | 372 | { |
| 380 | 373 | register int colour = ( ( data & 0x8000 ) ? 2 : 0 ) | ( ( data & 0x0080 ) ? 1 : 0 ); |
| 381 | | gb_plot_pixel( bitmap, xindex, state->m_lcd.current_line, state->m_lcd.gb_bpal[ colour ] ); |
| 382 | | state->m_lcd.bg_zbuf[ xindex ] = colour; |
| 374 | gb_plot_pixel( bitmap, xindex, m_lcd.current_line, m_lcd.gb_bpal[ colour ] ); |
| 375 | m_lcd.bg_zbuf[ xindex ] = colour; |
| 383 | 376 | xindex++; |
| 384 | 377 | data <<= 1; |
| 385 | | state->m_lcd.layer[l].xshift++; |
| 378 | m_lcd.layer[l].xshift++; |
| 386 | 379 | i--; |
| 387 | 380 | } |
| 388 | | if ( state->m_lcd.layer[l].xshift == 8 ) |
| 381 | if ( m_lcd.layer[l].xshift == 8 ) |
| 389 | 382 | { |
| 390 | 383 | /* Take possible changes to SCROLLY into account */ |
| 391 | 384 | if ( l == 0 ) |
| 392 | 385 | { |
| 393 | | state->m_lcd.layer[0].bgline = ( SCROLLY + state->m_lcd.current_line ) & 0xFF; |
| 394 | | map = state->m_lcd.layer[l].bg_map + ( ( state->m_lcd.layer[l].bgline << 2 ) & 0x3E0 ); |
| 395 | | tiles = state->m_lcd.layer[l].bg_tiles + ( ( state->m_lcd.layer[l].bgline & 7 ) << 1 ); |
| 386 | m_lcd.layer[0].bgline = ( SCROLLY + m_lcd.current_line ) & 0xFF; |
| 387 | map = m_lcd.layer[l].bg_map + ( ( m_lcd.layer[l].bgline << 2 ) & 0x3E0 ); |
| 388 | tiles = m_lcd.layer[l].bg_tiles + ( ( m_lcd.layer[l].bgline & 7 ) << 1 ); |
| 396 | 389 | } |
| 397 | 390 | |
| 398 | | state->m_lcd.layer[l].xindex = ( state->m_lcd.layer[l].xindex + 1 ) & 31; |
| 399 | | state->m_lcd.layer[l].xshift = 0; |
| 400 | | tile_index = ( map[ state->m_lcd.layer[l].xindex ] ^ state->m_lcd.gb_tile_no_mod ) * 16; |
| 391 | m_lcd.layer[l].xindex = ( m_lcd.layer[l].xindex + 1 ) & 31; |
| 392 | m_lcd.layer[l].xshift = 0; |
| 393 | tile_index = ( map[ m_lcd.layer[l].xindex ] ^ m_lcd.gb_tile_no_mod ) * 16; |
| 401 | 394 | data = tiles[ tile_index ] | ( tiles[ tile_index+1 ] << 8 ); |
| 402 | 395 | } |
| 403 | 396 | } |
| 404 | 397 | l++; |
| 405 | 398 | } |
| 406 | | if ( state->m_lcd.end_x == 160 && LCDCONT & 0x02 ) |
| 399 | if ( m_lcd.end_x == 160 && LCDCONT & 0x02 ) |
| 407 | 400 | { |
| 408 | | gb_update_sprites(machine); |
| 401 | gb_update_sprites(); |
| 409 | 402 | } |
| 410 | | state->m_lcd.start_x = state->m_lcd.end_x; |
| 403 | m_lcd.start_x = m_lcd.end_x; |
| 411 | 404 | } |
| 412 | 405 | } |
| 413 | 406 | else |
| r20640 | r20641 | |
| 415 | 408 | if ( ! ( LCDCONT & 0x80 ) ) |
| 416 | 409 | { |
| 417 | 410 | /* Draw an empty line when LCD is disabled */ |
| 418 | | if ( state->m_lcd.previous_line != state->m_lcd.current_line ) |
| 411 | if ( m_lcd.previous_line != m_lcd.current_line ) |
| 419 | 412 | { |
| 420 | | if ( state->m_lcd.current_line < 144 ) |
| 413 | if ( m_lcd.current_line < 144 ) |
| 421 | 414 | { |
| 422 | | screen_device *screen = machine.first_screen(); |
| 415 | screen_device *screen = machine().first_screen(); |
| 423 | 416 | const rectangle &r = screen->visible_area(); |
| 424 | | rectangle r1(r.min_x, r.max_x, state->m_lcd.current_line, state->m_lcd.current_line); |
| 417 | rectangle r1(r.min_x, r.max_x, m_lcd.current_line, m_lcd.current_line); |
| 425 | 418 | bitmap.fill(0, r1 ); |
| 426 | 419 | } |
| 427 | | state->m_lcd.previous_line = state->m_lcd.current_line; |
| 420 | m_lcd.previous_line = m_lcd.current_line; |
| 428 | 421 | } |
| 429 | 422 | } |
| 430 | 423 | } |
| r20640 | r20641 | |
| 434 | 427 | |
| 435 | 428 | /* --- Super Game Boy Specific --- */ |
| 436 | 429 | |
| 437 | | INLINE void sgb_update_sprites (running_machine &machine) |
| 430 | void gb_state::sgb_update_sprites() |
| 438 | 431 | { |
| 439 | | gb_state *state = machine.driver_data<gb_state>(); |
| 440 | | bitmap_ind16 &bitmap = state->m_bitmap; |
| 432 | bitmap_ind16 &bitmap = m_bitmap; |
| 441 | 433 | UINT8 height, tilemask, line, *oam, *vram, pal; |
| 442 | 434 | INT16 i, yindex; |
| 443 | 435 | |
| r20640 | r20641 | |
| 453 | 445 | } |
| 454 | 446 | |
| 455 | 447 | /* Offset to center of screen */ |
| 456 | | yindex = state->m_lcd.current_line + SGB_YOFFSET; |
| 457 | | line = state->m_lcd.current_line + 16; |
| 448 | yindex = m_lcd.current_line + SGB_YOFFSET; |
| 449 | line = m_lcd.current_line + 16; |
| 458 | 450 | |
| 459 | | oam = state->m_lcd.gb_oam->base() + 39 * 4; |
| 460 | | vram = state->m_lcd.gb_vram->base(); |
| 451 | oam = m_lcd.gb_oam->base() + 39 * 4; |
| 452 | vram = m_lcd.gb_vram->base(); |
| 461 | 453 | for (i = 39; i >= 0; i--) |
| 462 | 454 | { |
| 463 | 455 | /* if sprite is on current line && x-coordinate && x-coordinate is < 168 */ |
| r20640 | r20641 | |
| 468 | 460 | INT16 xindex; |
| 469 | 461 | int adr; |
| 470 | 462 | |
| 471 | | spal = (oam[3] & 0x10) ? state->m_lcd.gb_spal1 : state->m_lcd.gb_spal0; |
| 463 | spal = (oam[3] & 0x10) ? m_lcd.gb_spal1 : m_lcd.gb_spal0; |
| 472 | 464 | xindex = oam[1] - 8; |
| 473 | 465 | if (oam[3] & 0x40) /* flip y ? */ |
| 474 | 466 | { |
| r20640 | r20641 | |
| 481 | 473 | data = (vram[adr + 1] << 8) | vram[adr]; |
| 482 | 474 | |
| 483 | 475 | /* Find the palette to use */ |
| 484 | | pal = state->m_sgb_pal_map[(xindex >> 3)][((yindex - SGB_YOFFSET) >> 3)] << 2; |
| 476 | pal = m_sgb_pal_map[(xindex >> 3)][((yindex - SGB_YOFFSET) >> 3)] << 2; |
| 485 | 477 | |
| 486 | 478 | /* Offset to center of screen */ |
| 487 | 479 | xindex += SGB_XOFFSET; |
| r20640 | r20641 | |
| 492 | 484 | for (bit = 0; bit < 8; bit++, xindex++) |
| 493 | 485 | { |
| 494 | 486 | register int colour = ((data & 0x0100) ? 2 : 0) | ((data & 0x0001) ? 1 : 0); |
| 495 | | if ((xindex >= SGB_XOFFSET && xindex < SGB_XOFFSET + 160) && colour && !state->m_lcd.bg_zbuf[xindex - SGB_XOFFSET]) |
| 496 | | gb_plot_pixel(bitmap, xindex, yindex, state->m_sgb_pal[pal + spal[colour]]); |
| 487 | if ((xindex >= SGB_XOFFSET && xindex < SGB_XOFFSET + 160) && colour && !m_lcd.bg_zbuf[xindex - SGB_XOFFSET]) |
| 488 | gb_plot_pixel(bitmap, xindex, yindex, m_sgb_pal[pal + spal[colour]]); |
| 497 | 489 | data >>= 1; |
| 498 | 490 | } |
| 499 | 491 | break; |
| r20640 | r20641 | |
| 502 | 494 | { |
| 503 | 495 | register int colour = ((data & 0x0100) ? 2 : 0) | ((data & 0x0001) ? 1 : 0); |
| 504 | 496 | if ((xindex >= SGB_XOFFSET && xindex < SGB_XOFFSET + 160) && colour) |
| 505 | | gb_plot_pixel(bitmap, xindex, yindex, state->m_sgb_pal[pal + spal[colour]]); |
| 497 | gb_plot_pixel(bitmap, xindex, yindex, m_sgb_pal[pal + spal[colour]]); |
| 506 | 498 | data >>= 1; |
| 507 | 499 | } |
| 508 | 500 | break; |
| r20640 | r20641 | |
| 510 | 502 | for (bit = 0; bit < 8; bit++, xindex++) |
| 511 | 503 | { |
| 512 | 504 | register int colour = ((data & 0x8000) ? 2 : 0) | ((data & 0x0080) ? 1 : 0); |
| 513 | | if ((xindex >= SGB_XOFFSET && xindex < SGB_XOFFSET + 160) && colour && !state->m_lcd.bg_zbuf[xindex - SGB_XOFFSET]) |
| 514 | | gb_plot_pixel(bitmap, xindex, yindex, state->m_sgb_pal[pal + spal[colour]]); |
| 505 | if ((xindex >= SGB_XOFFSET && xindex < SGB_XOFFSET + 160) && colour && !m_lcd.bg_zbuf[xindex - SGB_XOFFSET]) |
| 506 | gb_plot_pixel(bitmap, xindex, yindex, m_sgb_pal[pal + spal[colour]]); |
| 515 | 507 | data <<= 1; |
| 516 | 508 | } |
| 517 | 509 | break; |
| r20640 | r20641 | |
| 520 | 512 | { |
| 521 | 513 | register int colour = ((data & 0x8000) ? 2 : 0) | ((data & 0x0080) ? 1 : 0); |
| 522 | 514 | if ((xindex >= SGB_XOFFSET && xindex < SGB_XOFFSET + 160) && colour) |
| 523 | | gb_plot_pixel(bitmap, xindex, yindex, state->m_sgb_pal[pal + spal[colour]]); |
| 515 | gb_plot_pixel(bitmap, xindex, yindex, m_sgb_pal[pal + spal[colour]]); |
| 524 | 516 | data <<= 1; |
| 525 | 517 | } |
| 526 | 518 | break; |
| r20640 | r20641 | |
| 530 | 522 | } |
| 531 | 523 | } |
| 532 | 524 | |
| 533 | | static void sgb_refresh_border(running_machine &machine) |
| 525 | |
| 526 | void gb_state::sgb_refresh_border() |
| 534 | 527 | { |
| 535 | | gb_state *state = machine.driver_data<gb_state>(); |
| 536 | 528 | UINT16 data, data2; |
| 537 | 529 | UINT16 yidx, xidx, xindex; |
| 538 | 530 | UINT8 *map, *tiles, *tiles2; |
| 539 | 531 | UINT8 pal, i; |
| 540 | | bitmap_ind16 &bitmap = state->m_bitmap; |
| 532 | bitmap_ind16 &bitmap = m_bitmap; |
| 541 | 533 | |
| 542 | | map = state->m_sgb_tile_map - 64; |
| 534 | map = m_sgb_tile_map - 64; |
| 543 | 535 | |
| 544 | 536 | for( yidx = 0; yidx < 224; yidx++ ) |
| 545 | 537 | { |
| r20640 | r20641 | |
| 548 | 540 | for( xidx = 0; xidx < 64; xidx+=2 ) |
| 549 | 541 | { |
| 550 | 542 | if( map[xidx+1] & 0x80 ) /* Vertical flip */ |
| 551 | | tiles = state->m_sgb_tile_data + ( ( 7 - ( yidx % 8 ) ) << 1 ); |
| 543 | tiles = m_sgb_tile_data + ( ( 7 - ( yidx % 8 ) ) << 1 ); |
| 552 | 544 | else /* No vertical flip */ |
| 553 | | tiles = state->m_sgb_tile_data + ( ( yidx % 8 ) << 1 ); |
| 545 | tiles = m_sgb_tile_data + ( ( yidx % 8 ) << 1 ); |
| 554 | 546 | tiles2 = tiles + 16; |
| 555 | 547 | |
| 556 | 548 | pal = (map[xidx+1] & 0x1C) >> 2; |
| r20640 | r20641 | |
| 558 | 550 | pal = 1; |
| 559 | 551 | pal <<= 4; |
| 560 | 552 | |
| 561 | | if( state->m_sgb_hack ) |
| 553 | if( m_sgb_hack ) |
| 562 | 554 | { /* A few games do weird stuff */ |
| 563 | 555 | UINT8 tileno = map[xidx]; |
| 564 | 556 | if( tileno >= 128 ) tileno = ((64 + tileno) % 128) + 128; |
| r20640 | r20641 | |
| 596 | 588 | if( !((yidx >= SGB_YOFFSET && yidx < SGB_YOFFSET + 144) && |
| 597 | 589 | (xindex >= SGB_XOFFSET && xindex < SGB_XOFFSET + 160)) ) |
| 598 | 590 | { |
| 599 | | gb_plot_pixel(bitmap, xindex, yidx, state->m_sgb_pal[pal + colour]); |
| 591 | gb_plot_pixel(bitmap, xindex, yidx, m_sgb_pal[pal + colour]); |
| 600 | 592 | } |
| 601 | 593 | xindex++; |
| 602 | 594 | } |
| r20640 | r20641 | |
| 604 | 596 | } |
| 605 | 597 | } |
| 606 | 598 | |
| 607 | | static void sgb_update_scanline( running_machine &machine ) |
| 599 | void gb_state::sgb_update_scanline() |
| 608 | 600 | { |
| 609 | | gb_state *state = machine.driver_data<gb_state>(); |
| 610 | | bitmap_ind16 &bitmap = state->m_bitmap; |
| 601 | bitmap_ind16 &bitmap = m_bitmap; |
| 611 | 602 | |
| 612 | 603 | g_profiler.start(PROFILER_VIDEO); |
| 613 | 604 | |
| 614 | 605 | if ( ( LCDSTAT & 0x03 ) == 0x03 ) |
| 615 | 606 | { |
| 616 | 607 | /* Calcuate number of pixels to render based on time still left on the timer */ |
| 617 | | UINT32 cycles_to_go = machine.device<cpu_device>("maincpu")->attotime_to_cycles(state->m_lcd.lcd_timer ->remaining( ) ); |
| 608 | UINT32 cycles_to_go = m_maincpu->attotime_to_cycles(m_lcd.lcd_timer->remaining( ) ); |
| 618 | 609 | int l = 0; |
| 619 | 610 | |
| 620 | | if ( state->m_lcd.start_x < 0 ) |
| 611 | if ( m_lcd.start_x < 0 ) |
| 621 | 612 | { |
| 622 | 613 | /* Window is enabled if the hardware says so AND the current scanline is |
| 623 | 614 | * within the window AND the window X coordinate is <=166 */ |
| 624 | | state->m_lcd.layer[1].enabled = ((LCDCONT & 0x20) && state->m_lcd.current_line >= WNDPOSY && WNDPOSX <= 166) ? 1 : 0; |
| 615 | m_lcd.layer[1].enabled = ((LCDCONT & 0x20) && m_lcd.current_line >= WNDPOSY && WNDPOSX <= 166) ? 1 : 0; |
| 625 | 616 | |
| 626 | 617 | /* BG is enabled if the hardware says so AND (window_off OR (window_on |
| 627 | 618 | * AND window's X position is >=7 ) ) */ |
| 628 | | state->m_lcd.layer[0].enabled = ((LCDCONT & 0x01) && ((!state->m_lcd.layer[1].enabled) || (state->m_lcd.layer[1].enabled && WNDPOSX >= 7))) ? 1 : 0; |
| 619 | m_lcd.layer[0].enabled = ((LCDCONT & 0x01) && ((!m_lcd.layer[1].enabled) || (m_lcd.layer[1].enabled && WNDPOSX >= 7))) ? 1 : 0; |
| 629 | 620 | |
| 630 | | if ( state->m_lcd.layer[0].enabled ) |
| 621 | if ( m_lcd.layer[0].enabled ) |
| 631 | 622 | { |
| 632 | | state->m_lcd.layer[0].bgline = ( SCROLLY + state->m_lcd.current_line ) & 0xFF; |
| 633 | | state->m_lcd.layer[0].bg_map = state->m_lcd.gb_bgdtab; |
| 634 | | state->m_lcd.layer[0].bg_tiles = state->m_lcd.gb_chrgen; |
| 635 | | state->m_lcd.layer[0].xindex = SCROLLX >> 3; |
| 636 | | state->m_lcd.layer[0].xshift = SCROLLX & 7; |
| 637 | | state->m_lcd.layer[0].xstart = 0; |
| 638 | | state->m_lcd.layer[0].xend = 160; |
| 623 | m_lcd.layer[0].bgline = ( SCROLLY + m_lcd.current_line ) & 0xFF; |
| 624 | m_lcd.layer[0].bg_map = m_lcd.gb_bgdtab; |
| 625 | m_lcd.layer[0].bg_tiles = m_lcd.gb_chrgen; |
| 626 | m_lcd.layer[0].xindex = SCROLLX >> 3; |
| 627 | m_lcd.layer[0].xshift = SCROLLX & 7; |
| 628 | m_lcd.layer[0].xstart = 0; |
| 629 | m_lcd.layer[0].xend = 160; |
| 639 | 630 | } |
| 640 | 631 | |
| 641 | | if ( state->m_lcd.layer[1].enabled ) |
| 632 | if ( m_lcd.layer[1].enabled ) |
| 642 | 633 | { |
| 643 | 634 | int xpos; |
| 644 | 635 | |
| r20640 | r20641 | |
| 647 | 638 | if (xpos < 0) |
| 648 | 639 | xpos = 0; |
| 649 | 640 | |
| 650 | | state->m_lcd.layer[1].bgline = state->m_lcd.window_lines_drawn; |
| 651 | | state->m_lcd.layer[1].bg_map = state->m_lcd.gb_wndtab; |
| 652 | | state->m_lcd.layer[1].bg_tiles = state->m_lcd.gb_chrgen; |
| 653 | | state->m_lcd.layer[1].xindex = 0; |
| 654 | | state->m_lcd.layer[1].xshift = 0; |
| 655 | | state->m_lcd.layer[1].xstart = xpos; |
| 656 | | state->m_lcd.layer[1].xend = 160; |
| 657 | | state->m_lcd.layer[0].xend = xpos; |
| 641 | m_lcd.layer[1].bgline = m_lcd.window_lines_drawn; |
| 642 | m_lcd.layer[1].bg_map = m_lcd.gb_wndtab; |
| 643 | m_lcd.layer[1].bg_tiles = m_lcd.gb_chrgen; |
| 644 | m_lcd.layer[1].xindex = 0; |
| 645 | m_lcd.layer[1].xshift = 0; |
| 646 | m_lcd.layer[1].xstart = xpos; |
| 647 | m_lcd.layer[1].xend = 160; |
| 648 | m_lcd.layer[0].xend = xpos; |
| 658 | 649 | } |
| 659 | | state->m_lcd.start_x = 0; |
| 650 | m_lcd.start_x = 0; |
| 660 | 651 | } |
| 661 | 652 | |
| 662 | 653 | if ( cycles_to_go == 0 ) |
| 663 | 654 | { |
| 664 | 655 | /* Does this belong here? or should it be moved to the else block */ |
| 665 | 656 | /* Handle SGB mask */ |
| 666 | | switch( state->m_sgb_window_mask ) |
| 657 | switch( m_sgb_window_mask ) |
| 667 | 658 | { |
| 668 | 659 | case 1: /* Freeze screen */ |
| 669 | 660 | return; |
| r20640 | r20641 | |
| 680 | 671 | } |
| 681 | 672 | |
| 682 | 673 | /* Draw the "border" if we're on the first line */ |
| 683 | | if ( state->m_lcd.current_line == 0 ) |
| 674 | if ( m_lcd.current_line == 0 ) |
| 684 | 675 | { |
| 685 | | sgb_refresh_border(machine); |
| 676 | sgb_refresh_border(); |
| 686 | 677 | } |
| 687 | 678 | } |
| 688 | 679 | if ( cycles_to_go < 160 ) |
| 689 | 680 | { |
| 690 | | state->m_lcd.end_x = MIN(160 - cycles_to_go,160); |
| 681 | m_lcd.end_x = MIN(160 - cycles_to_go,160); |
| 691 | 682 | |
| 692 | 683 | /* if background or screen disabled clear line */ |
| 693 | 684 | if ( ! ( LCDCONT & 0x01 ) ) |
| 694 | 685 | { |
| 695 | | rectangle r(SGB_XOFFSET, SGB_XOFFSET + 160 - 1, state->m_lcd.current_line + SGB_YOFFSET, state->m_lcd.current_line + SGB_YOFFSET); |
| 686 | rectangle r(SGB_XOFFSET, SGB_XOFFSET + 160 - 1, m_lcd.current_line + SGB_YOFFSET, m_lcd.current_line + SGB_YOFFSET); |
| 696 | 687 | bitmap.fill(0, r ); |
| 697 | 688 | } |
| 698 | 689 | while( l < 2 ) |
| r20640 | r20641 | |
| 701 | 692 | UINT16 data; |
| 702 | 693 | int i, tile_index; |
| 703 | 694 | |
| 704 | | if ( ! state->m_lcd.layer[l].enabled ) |
| 695 | if ( ! m_lcd.layer[l].enabled ) |
| 705 | 696 | { |
| 706 | 697 | l++; |
| 707 | 698 | continue; |
| 708 | 699 | } |
| 709 | | map = state->m_lcd.layer[l].bg_map + ( ( state->m_lcd.layer[l].bgline << 2 ) & 0x3E0 ); |
| 710 | | tiles = state->m_lcd.layer[l].bg_tiles + ( ( state->m_lcd.layer[l].bgline & 7 ) << 1 ); |
| 711 | | xindex = state->m_lcd.start_x; |
| 712 | | if ( xindex < state->m_lcd.layer[l].xstart ) |
| 713 | | xindex = state->m_lcd.layer[l].xstart; |
| 714 | | i = state->m_lcd.end_x; |
| 715 | | if ( i > state->m_lcd.layer[l].xend ) |
| 716 | | i = state->m_lcd.layer[l].xend; |
| 700 | map = m_lcd.layer[l].bg_map + ( ( m_lcd.layer[l].bgline << 2 ) & 0x3E0 ); |
| 701 | tiles = m_lcd.layer[l].bg_tiles + ( ( m_lcd.layer[l].bgline & 7 ) << 1 ); |
| 702 | xindex = m_lcd.start_x; |
| 703 | if ( xindex < m_lcd.layer[l].xstart ) |
| 704 | xindex = m_lcd.layer[l].xstart; |
| 705 | i = m_lcd.end_x; |
| 706 | if ( i > m_lcd.layer[l].xend ) |
| 707 | i = m_lcd.layer[l].xend; |
| 717 | 708 | i = i - xindex; |
| 718 | 709 | |
| 719 | | tile_index = (map[state->m_lcd.layer[l].xindex] ^ state->m_lcd.gb_tile_no_mod) * 16; |
| 710 | tile_index = (map[m_lcd.layer[l].xindex] ^ m_lcd.gb_tile_no_mod) * 16; |
| 720 | 711 | data = tiles[tile_index] | ( tiles[tile_index + 1] << 8 ); |
| 721 | | data <<= state->m_lcd.layer[l].xshift; |
| 712 | data <<= m_lcd.layer[l].xshift; |
| 722 | 713 | |
| 723 | 714 | /* Figure out which palette we're using */ |
| 724 | | sgb_palette = state->m_sgb_pal_map[ ( state->m_lcd.end_x - i ) >> 3 ][ state->m_lcd.current_line >> 3 ] << 2; |
| 715 | sgb_palette = m_sgb_pal_map[ ( m_lcd.end_x - i ) >> 3 ][ m_lcd.current_line >> 3 ] << 2; |
| 725 | 716 | |
| 726 | 717 | while( i > 0 ) |
| 727 | 718 | { |
| 728 | | while( ( state->m_lcd.layer[l].xshift < 8 ) && i ) |
| 719 | while( ( m_lcd.layer[l].xshift < 8 ) && i ) |
| 729 | 720 | { |
| 730 | 721 | register int colour = ( ( data & 0x8000 ) ? 2 : 0 ) | ( ( data & 0x0080 ) ? 1 : 0 ); |
| 731 | | gb_plot_pixel( bitmap, xindex + SGB_XOFFSET, state->m_lcd.current_line + SGB_YOFFSET, state->m_sgb_pal[ sgb_palette + state->m_lcd.gb_bpal[colour]] ); |
| 732 | | state->m_lcd.bg_zbuf[xindex] = colour; |
| 722 | gb_plot_pixel( bitmap, xindex + SGB_XOFFSET, m_lcd.current_line + SGB_YOFFSET, m_sgb_pal[ sgb_palette + m_lcd.gb_bpal[colour]] ); |
| 723 | m_lcd.bg_zbuf[xindex] = colour; |
| 733 | 724 | xindex++; |
| 734 | 725 | data <<= 1; |
| 735 | | state->m_lcd.layer[l].xshift++; |
| 726 | m_lcd.layer[l].xshift++; |
| 736 | 727 | i--; |
| 737 | 728 | } |
| 738 | | if ( state->m_lcd.layer[l].xshift == 8 ) |
| 729 | if ( m_lcd.layer[l].xshift == 8 ) |
| 739 | 730 | { |
| 740 | 731 | /* Take possible changes to SCROLLY into account */ |
| 741 | 732 | if ( l == 0 ) |
| 742 | 733 | { |
| 743 | | state->m_lcd.layer[0].bgline = ( SCROLLY + state->m_lcd.current_line ) & 0xFF; |
| 744 | | map = state->m_lcd.layer[l].bg_map + ( ( state->m_lcd.layer[l].bgline << 2 ) & 0x3E0 ); |
| 745 | | tiles = state->m_lcd.layer[l].bg_tiles + ( ( state->m_lcd.layer[l].bgline & 7 ) << 1 ); |
| 734 | m_lcd.layer[0].bgline = ( SCROLLY + m_lcd.current_line ) & 0xFF; |
| 735 | map = m_lcd.layer[l].bg_map + ( ( m_lcd.layer[l].bgline << 2 ) & 0x3E0 ); |
| 736 | tiles = m_lcd.layer[l].bg_tiles + ( ( m_lcd.layer[l].bgline & 7 ) << 1 ); |
| 746 | 737 | } |
| 747 | 738 | |
| 748 | | state->m_lcd.layer[l].xindex = ( state->m_lcd.layer[l].xindex + 1 ) & 31; |
| 749 | | state->m_lcd.layer[l].xshift = 0; |
| 750 | | tile_index = ( map[ state->m_lcd.layer[l].xindex ] ^ state->m_lcd.gb_tile_no_mod ) * 16; |
| 739 | m_lcd.layer[l].xindex = ( m_lcd.layer[l].xindex + 1 ) & 31; |
| 740 | m_lcd.layer[l].xshift = 0; |
| 741 | tile_index = ( map[ m_lcd.layer[l].xindex ] ^ m_lcd.gb_tile_no_mod ) * 16; |
| 751 | 742 | data = tiles[ tile_index ] | ( tiles[ tile_index + 1 ] << 8 ); |
| 752 | | sgb_palette = state->m_sgb_pal_map[ ( state->m_lcd.end_x - i ) >> 3 ][ state->m_lcd.current_line >> 3 ] << 2; |
| 743 | sgb_palette = m_sgb_pal_map[ ( m_lcd.end_x - i ) >> 3 ][ m_lcd.current_line >> 3 ] << 2; |
| 753 | 744 | } |
| 754 | 745 | } |
| 755 | 746 | l++; |
| 756 | 747 | } |
| 757 | | if ( ( state->m_lcd.end_x == 160 ) && ( LCDCONT & 0x02 ) ) |
| 748 | if ( ( m_lcd.end_x == 160 ) && ( LCDCONT & 0x02 ) ) |
| 758 | 749 | { |
| 759 | | sgb_update_sprites(machine); |
| 750 | sgb_update_sprites(); |
| 760 | 751 | } |
| 761 | | state->m_lcd.start_x = state->m_lcd.end_x; |
| 752 | m_lcd.start_x = m_lcd.end_x; |
| 762 | 753 | } |
| 763 | 754 | } |
| 764 | 755 | else |
| r20640 | r20641 | |
| 766 | 757 | if ( ! ( LCDCONT * 0x80 ) ) |
| 767 | 758 | { |
| 768 | 759 | /* if screen disabled clear line */ |
| 769 | | if ( state->m_lcd.previous_line != state->m_lcd.current_line ) |
| 760 | if ( m_lcd.previous_line != m_lcd.current_line ) |
| 770 | 761 | { |
| 771 | 762 | /* Also refresh border here??? */ |
| 772 | | if ( state->m_lcd.current_line < 144 ) |
| 763 | if ( m_lcd.current_line < 144 ) |
| 773 | 764 | { |
| 774 | | rectangle r(SGB_XOFFSET, SGB_XOFFSET + 160 - 1, state->m_lcd.current_line + SGB_YOFFSET, state->m_lcd.current_line + SGB_YOFFSET); |
| 765 | rectangle r(SGB_XOFFSET, SGB_XOFFSET + 160 - 1, m_lcd.current_line + SGB_YOFFSET, m_lcd.current_line + SGB_YOFFSET); |
| 775 | 766 | bitmap.fill(0, r); |
| 776 | 767 | } |
| 777 | | state->m_lcd.previous_line = state->m_lcd.current_line; |
| 768 | m_lcd.previous_line = m_lcd.current_line; |
| 778 | 769 | } |
| 779 | 770 | } |
| 780 | 771 | } |
| r20640 | r20641 | |
| 784 | 775 | |
| 785 | 776 | /* --- Game Boy Color Specific --- */ |
| 786 | 777 | |
| 787 | | INLINE void cgb_update_sprites ( running_machine &machine ) |
| 778 | void gb_state::cgb_update_sprites() |
| 788 | 779 | { |
| 789 | | gb_state *state = machine.driver_data<gb_state>(); |
| 790 | | bitmap_ind16 &bitmap = state->m_bitmap; |
| 780 | bitmap_ind16 &bitmap = m_bitmap; |
| 791 | 781 | UINT8 height, tilemask, line, *oam; |
| 792 | 782 | int i, xindex, yindex; |
| 793 | 783 | |
| r20640 | r20641 | |
| 802 | 792 | tilemask = 0xFF; |
| 803 | 793 | } |
| 804 | 794 | |
| 805 | | yindex = state->m_lcd.current_line; |
| 806 | | line = state->m_lcd.current_line + 16; |
| 795 | yindex = m_lcd.current_line; |
| 796 | line = m_lcd.current_line + 16; |
| 807 | 797 | |
| 808 | | oam = state->m_lcd.gb_oam->base() + 39 * 4; |
| 798 | oam = m_lcd.gb_oam->base() + 39 * 4; |
| 809 | 799 | for (i = 39; i >= 0; i--) |
| 810 | 800 | { |
| 811 | 801 | /* if sprite is on current line && x-coordinate && x-coordinate is < 168 */ |
| r20640 | r20641 | |
| 815 | 805 | UINT8 bit, pal; |
| 816 | 806 | |
| 817 | 807 | /* Handle mono mode for GB games */ |
| 818 | | if( ! state->m_lcd.gbc_mode ) |
| 808 | if( ! m_lcd.gbc_mode ) |
| 819 | 809 | pal = (oam[3] & 0x10) ? 4 : 0; |
| 820 | 810 | else |
| 821 | 811 | pal = ((oam[3] & 0x7) * 4); |
| r20640 | r20641 | |
| 823 | 813 | xindex = oam[1] - 8; |
| 824 | 814 | if (oam[3] & 0x40) /* flip y ? */ |
| 825 | 815 | { |
| 826 | | data = *((UINT16 *) &state->m_lcd.gb_vram->base()[ ((oam[3] & 0x8)<<10) + (oam[2] & tilemask) * 16 + (height - 1 - line + oam[0]) * 2]); |
| 816 | data = *((UINT16 *) &m_lcd.gb_vram->base()[ ((oam[3] & 0x8)<<10) + (oam[2] & tilemask) * 16 + (height - 1 - line + oam[0]) * 2]); |
| 827 | 817 | } |
| 828 | 818 | else |
| 829 | 819 | { |
| 830 | | data = *((UINT16 *) &state->m_lcd.gb_vram->base()[ ((oam[3] & 0x8)<<10) + (oam[2] & tilemask) * 16 + (line - oam[0]) * 2]); |
| 820 | data = *((UINT16 *) &m_lcd.gb_vram->base()[ ((oam[3] & 0x8)<<10) + (oam[2] & tilemask) * 16 + (line - oam[0]) * 2]); |
| 831 | 821 | } |
| 832 | 822 | #ifndef LSB_FIRST |
| 833 | 823 | data = (data << 8) | (data >> 8); |
| r20640 | r20641 | |
| 839 | 829 | for (bit = 0; bit < 8; bit++, xindex++) |
| 840 | 830 | { |
| 841 | 831 | register int colour = ((data & 0x0100) ? 2 : 0) | ((data & 0x0001) ? 1 : 0); |
| 842 | | if (colour && !state->m_lcd.bg_zbuf[xindex] && xindex >= 0 && xindex < 160) |
| 832 | if (colour && !m_lcd.bg_zbuf[xindex] && xindex >= 0 && xindex < 160) |
| 843 | 833 | { |
| 844 | | if ( ! state->m_lcd.gbc_mode ) |
| 845 | | colour = pal ? state->m_lcd.gb_spal1[colour] : state->m_lcd.gb_spal0[colour]; |
| 846 | | gb_plot_pixel(bitmap, xindex, yindex, state->m_lcd.cgb_spal[pal + colour]); |
| 834 | if ( ! m_lcd.gbc_mode ) |
| 835 | colour = pal ? m_lcd.gb_spal1[colour] : m_lcd.gb_spal0[colour]; |
| 836 | gb_plot_pixel(bitmap, xindex, yindex, m_lcd.cgb_spal[pal + colour]); |
| 847 | 837 | } |
| 848 | 838 | data >>= 1; |
| 849 | 839 | } |
| r20640 | r20641 | |
| 852 | 842 | for (bit = 0; bit < 8; bit++, xindex++) |
| 853 | 843 | { |
| 854 | 844 | register int colour = ((data & 0x0100) ? 2 : 0) | ((data & 0x0001) ? 1 : 0); |
| 855 | | if((state->m_lcd.bg_zbuf[xindex] & 0x80) && (state->m_lcd.bg_zbuf[xindex] & 0x7f) && (LCDCONT & 0x1)) |
| 845 | if((m_lcd.bg_zbuf[xindex] & 0x80) && (m_lcd.bg_zbuf[xindex] & 0x7f) && (LCDCONT & 0x1)) |
| 856 | 846 | colour = 0; |
| 857 | 847 | if (colour && xindex >= 0 && xindex < 160) |
| 858 | 848 | { |
| 859 | | if ( ! state->m_lcd.gbc_mode ) |
| 860 | | colour = pal ? state->m_lcd.gb_spal1[colour] : state->m_lcd.gb_spal0[colour]; |
| 861 | | gb_plot_pixel(bitmap, xindex, yindex, state->m_lcd.cgb_spal[pal + colour]); |
| 849 | if ( ! m_lcd.gbc_mode ) |
| 850 | colour = pal ? m_lcd.gb_spal1[colour] : m_lcd.gb_spal0[colour]; |
| 851 | gb_plot_pixel(bitmap, xindex, yindex, m_lcd.cgb_spal[pal + colour]); |
| 862 | 852 | } |
| 863 | 853 | data >>= 1; |
| 864 | 854 | } |
| r20640 | r20641 | |
| 867 | 857 | for (bit = 0; bit < 8; bit++, xindex++) |
| 868 | 858 | { |
| 869 | 859 | register int colour = ((data & 0x8000) ? 2 : 0) | ((data & 0x0080) ? 1 : 0); |
| 870 | | if (colour && !state->m_lcd.bg_zbuf[xindex] && xindex >= 0 && xindex < 160) |
| 860 | if (colour && !m_lcd.bg_zbuf[xindex] && xindex >= 0 && xindex < 160) |
| 871 | 861 | { |
| 872 | | if ( ! state->m_lcd.gbc_mode ) |
| 873 | | colour = pal ? state->m_lcd.gb_spal1[colour] : state->m_lcd.gb_spal0[colour]; |
| 874 | | gb_plot_pixel(bitmap, xindex, yindex, state->m_lcd.cgb_spal[pal + colour]); |
| 862 | if ( ! m_lcd.gbc_mode ) |
| 863 | colour = pal ? m_lcd.gb_spal1[colour] : m_lcd.gb_spal0[colour]; |
| 864 | gb_plot_pixel(bitmap, xindex, yindex, m_lcd.cgb_spal[pal + colour]); |
| 875 | 865 | } |
| 876 | 866 | data <<= 1; |
| 877 | 867 | } |
| r20640 | r20641 | |
| 880 | 870 | for (bit = 0; bit < 8; bit++, xindex++) |
| 881 | 871 | { |
| 882 | 872 | register int colour = ((data & 0x8000) ? 2 : 0) | ((data & 0x0080) ? 1 : 0); |
| 883 | | if((state->m_lcd.bg_zbuf[xindex] & 0x80) && (state->m_lcd.bg_zbuf[xindex] & 0x7f) && (LCDCONT & 0x1)) |
| 873 | if((m_lcd.bg_zbuf[xindex] & 0x80) && (m_lcd.bg_zbuf[xindex] & 0x7f) && (LCDCONT & 0x1)) |
| 884 | 874 | colour = 0; |
| 885 | 875 | if (colour && xindex >= 0 && xindex < 160) |
| 886 | 876 | { |
| 887 | | if ( ! state->m_lcd.gbc_mode ) |
| 888 | | colour = pal ? state->m_lcd.gb_spal1[colour] : state->m_lcd.gb_spal0[colour]; |
| 889 | | gb_plot_pixel(bitmap, xindex, yindex, state->m_lcd.cgb_spal[pal + colour]); |
| 877 | if ( ! m_lcd.gbc_mode ) |
| 878 | colour = pal ? m_lcd.gb_spal1[colour] : m_lcd.gb_spal0[colour]; |
| 879 | gb_plot_pixel(bitmap, xindex, yindex, m_lcd.cgb_spal[pal + colour]); |
| 890 | 880 | } |
| 891 | 881 | data <<= 1; |
| 892 | 882 | } |
| r20640 | r20641 | |
| 897 | 887 | } |
| 898 | 888 | } |
| 899 | 889 | |
| 900 | | static void cgb_update_scanline ( running_machine &machine ) |
| 890 | void gb_state::cgb_update_scanline() |
| 901 | 891 | { |
| 902 | | gb_state *state = machine.driver_data<gb_state>(); |
| 903 | | bitmap_ind16 &bitmap = state->m_bitmap; |
| 892 | bitmap_ind16 &bitmap = m_bitmap; |
| 904 | 893 | |
| 905 | 894 | g_profiler.start(PROFILER_VIDEO); |
| 906 | 895 | |
| 907 | 896 | if ( ( LCDSTAT & 0x03 ) == 0x03 ) |
| 908 | 897 | { |
| 909 | 898 | /* Calcuate number of pixels to render based on time still left on the timer */ |
| 910 | | UINT32 cycles_to_go = machine.device<cpu_device>("maincpu")->attotime_to_cycles(state->m_lcd.lcd_timer ->remaining( ) ); |
| 899 | UINT32 cycles_to_go = m_maincpu->attotime_to_cycles(m_lcd.lcd_timer->remaining( ) ); |
| 911 | 900 | int l = 0; |
| 912 | 901 | |
| 913 | | if ( state->m_lcd.start_x < 0 ) |
| 902 | if ( m_lcd.start_x < 0 ) |
| 914 | 903 | { |
| 915 | 904 | /* Window is enabled if the hardware says so AND the current scanline is |
| 916 | 905 | * within the window AND the window X coordinate is <=166 */ |
| 917 | | state->m_lcd.layer[1].enabled = ( ( LCDCONT & 0x20 ) && ( state->m_lcd.current_line >= WNDPOSY ) && ( WNDPOSX <= 166 ) ) ? 1 : 0; |
| 906 | m_lcd.layer[1].enabled = ( ( LCDCONT & 0x20 ) && ( m_lcd.current_line >= WNDPOSY ) && ( WNDPOSX <= 166 ) ) ? 1 : 0; |
| 918 | 907 | |
| 919 | 908 | /* BG is enabled if the hardware says so AND (window_off OR (window_on |
| 920 | 909 | * AND window's X position is >=7 ) ) */ |
| 921 | | state->m_lcd.layer[0].enabled = ( ( LCDCONT & 0x01 ) && ( ( ! state->m_lcd.layer[1].enabled ) || ( state->m_lcd.layer[1].enabled && ( WNDPOSX >= 7 ) ) ) ) ? 1 : 0; |
| 910 | m_lcd.layer[0].enabled = ( ( LCDCONT & 0x01 ) && ( ( ! m_lcd.layer[1].enabled ) || ( m_lcd.layer[1].enabled && ( WNDPOSX >= 7 ) ) ) ) ? 1 : 0; |
| 922 | 911 | |
| 923 | | if ( state->m_lcd.layer[0].enabled ) |
| 912 | if ( m_lcd.layer[0].enabled ) |
| 924 | 913 | { |
| 925 | | state->m_lcd.layer[0].bgline = ( SCROLLY + state->m_lcd.current_line ) & 0xFF; |
| 926 | | state->m_lcd.layer[0].bg_map = state->m_lcd.gb_bgdtab; |
| 927 | | state->m_lcd.layer[0].gbc_map = state->m_lcd.gbc_bgdtab; |
| 928 | | state->m_lcd.layer[0].xindex = SCROLLX >> 3; |
| 929 | | state->m_lcd.layer[0].xshift = SCROLLX & 7; |
| 930 | | state->m_lcd.layer[0].xstart = 0; |
| 931 | | state->m_lcd.layer[0].xend = 160; |
| 914 | m_lcd.layer[0].bgline = ( SCROLLY + m_lcd.current_line ) & 0xFF; |
| 915 | m_lcd.layer[0].bg_map = m_lcd.gb_bgdtab; |
| 916 | m_lcd.layer[0].gbc_map = m_lcd.gbc_bgdtab; |
| 917 | m_lcd.layer[0].xindex = SCROLLX >> 3; |
| 918 | m_lcd.layer[0].xshift = SCROLLX & 7; |
| 919 | m_lcd.layer[0].xstart = 0; |
| 920 | m_lcd.layer[0].xend = 160; |
| 932 | 921 | } |
| 933 | 922 | |
| 934 | | if ( state->m_lcd.layer[1].enabled ) |
| 923 | if ( m_lcd.layer[1].enabled ) |
| 935 | 924 | { |
| 936 | 925 | int xpos; |
| 937 | 926 | |
| r20640 | r20641 | |
| 940 | 929 | if (xpos < 0) |
| 941 | 930 | xpos = 0; |
| 942 | 931 | |
| 943 | | state->m_lcd.layer[1].bgline = state->m_lcd.window_lines_drawn; |
| 944 | | state->m_lcd.layer[1].bg_map = state->m_lcd.gb_wndtab; |
| 945 | | state->m_lcd.layer[1].gbc_map = state->m_lcd.gbc_wndtab; |
| 946 | | state->m_lcd.layer[1].xindex = 0; |
| 947 | | state->m_lcd.layer[1].xshift = 0; |
| 948 | | state->m_lcd.layer[1].xstart = xpos; |
| 949 | | state->m_lcd.layer[1].xend = 160; |
| 950 | | state->m_lcd.layer[0].xend = xpos; |
| 932 | m_lcd.layer[1].bgline = m_lcd.window_lines_drawn; |
| 933 | m_lcd.layer[1].bg_map = m_lcd.gb_wndtab; |
| 934 | m_lcd.layer[1].gbc_map = m_lcd.gbc_wndtab; |
| 935 | m_lcd.layer[1].xindex = 0; |
| 936 | m_lcd.layer[1].xshift = 0; |
| 937 | m_lcd.layer[1].xstart = xpos; |
| 938 | m_lcd.layer[1].xend = 160; |
| 939 | m_lcd.layer[0].xend = xpos; |
| 951 | 940 | } |
| 952 | | state->m_lcd.start_x = 0; |
| 941 | m_lcd.start_x = 0; |
| 953 | 942 | } |
| 954 | 943 | |
| 955 | 944 | if ( cycles_to_go < 160 ) |
| 956 | 945 | { |
| 957 | | state->m_lcd.end_x = MIN(160 - cycles_to_go,160); |
| 946 | m_lcd.end_x = MIN(160 - cycles_to_go,160); |
| 958 | 947 | /* Draw empty line when the background is disabled */ |
| 959 | 948 | if ( ! ( LCDCONT & 0x01 ) ) |
| 960 | 949 | { |
| 961 | | rectangle r(state->m_lcd.start_x, state->m_lcd.end_x - 1, state->m_lcd.current_line, state->m_lcd.current_line); |
| 962 | | bitmap.fill(( ! state->m_lcd.gbc_mode ) ? 0 : 32767 , r); |
| 950 | rectangle r(m_lcd.start_x, m_lcd.end_x - 1, m_lcd.current_line, m_lcd.current_line); |
| 951 | bitmap.fill(( ! m_lcd.gbc_mode ) ? 0 : 32767 , r); |
| 963 | 952 | } |
| 964 | 953 | while ( l < 2 ) |
| 965 | 954 | { |
| r20640 | r20641 | |
| 967 | 956 | UINT16 data; |
| 968 | 957 | int i, tile_index; |
| 969 | 958 | |
| 970 | | if ( ! state->m_lcd.layer[l].enabled ) |
| 959 | if ( ! m_lcd.layer[l].enabled ) |
| 971 | 960 | { |
| 972 | 961 | l++; |
| 973 | 962 | continue; |
| 974 | 963 | } |
| 975 | | map = state->m_lcd.layer[l].bg_map + ( ( state->m_lcd.layer[l].bgline << 2 ) & 0x3E0 ); |
| 976 | | gbcmap = state->m_lcd.layer[l].gbc_map + ( ( state->m_lcd.layer[l].bgline << 2 ) & 0x3E0 ); |
| 977 | | tiles = ( gbcmap[ state->m_lcd.layer[l].xindex ] & 0x08 ) ? state->m_lcd.gbc_chrgen : state->m_lcd.gb_chrgen; |
| 964 | map = m_lcd.layer[l].bg_map + ( ( m_lcd.layer[l].bgline << 2 ) & 0x3E0 ); |
| 965 | gbcmap = m_lcd.layer[l].gbc_map + ( ( m_lcd.layer[l].bgline << 2 ) & 0x3E0 ); |
| 966 | tiles = ( gbcmap[ m_lcd.layer[l].xindex ] & 0x08 ) ? m_lcd.gbc_chrgen : m_lcd.gb_chrgen; |
| 978 | 967 | |
| 979 | 968 | /* Check for vertical flip */ |
| 980 | | if ( gbcmap[ state->m_lcd.layer[l].xindex ] & 0x40 ) |
| 969 | if ( gbcmap[ m_lcd.layer[l].xindex ] & 0x40 ) |
| 981 | 970 | { |
| 982 | | tiles += ( ( 7 - ( state->m_lcd.layer[l].bgline & 0x07 ) ) << 1 ); |
| 971 | tiles += ( ( 7 - ( m_lcd.layer[l].bgline & 0x07 ) ) << 1 ); |
| 983 | 972 | } |
| 984 | 973 | else |
| 985 | 974 | { |
| 986 | | tiles += ( ( state->m_lcd.layer[l].bgline & 0x07 ) << 1 ); |
| 975 | tiles += ( ( m_lcd.layer[l].bgline & 0x07 ) << 1 ); |
| 987 | 976 | } |
| 988 | | xindex = state->m_lcd.start_x; |
| 989 | | if ( xindex < state->m_lcd.layer[l].xstart ) |
| 990 | | xindex = state->m_lcd.layer[l].xstart; |
| 991 | | i = state->m_lcd.end_x; |
| 992 | | if ( i > state->m_lcd.layer[l].xend ) |
| 993 | | i = state->m_lcd.layer[l].xend; |
| 977 | xindex = m_lcd.start_x; |
| 978 | if ( xindex < m_lcd.layer[l].xstart ) |
| 979 | xindex = m_lcd.layer[l].xstart; |
| 980 | i = m_lcd.end_x; |
| 981 | if ( i > m_lcd.layer[l].xend ) |
| 982 | i = m_lcd.layer[l].xend; |
| 994 | 983 | i = i - xindex; |
| 995 | 984 | |
| 996 | | tile_index = ( map[ state->m_lcd.layer[l].xindex ] ^ state->m_lcd.gb_tile_no_mod ) * 16; |
| 985 | tile_index = ( map[ m_lcd.layer[l].xindex ] ^ m_lcd.gb_tile_no_mod ) * 16; |
| 997 | 986 | data = tiles[ tile_index ] | ( tiles[ tile_index + 1 ] << 8 ); |
| 998 | 987 | /* Check for horinzontal flip */ |
| 999 | | if ( gbcmap[ state->m_lcd.layer[l].xindex ] & 0x20 ) |
| 988 | if ( gbcmap[ m_lcd.layer[l].xindex ] & 0x20 ) |
| 1000 | 989 | { |
| 1001 | | data >>= state->m_lcd.layer[l].xshift; |
| 990 | data >>= m_lcd.layer[l].xshift; |
| 1002 | 991 | } |
| 1003 | 992 | else |
| 1004 | 993 | { |
| 1005 | | data <<= state->m_lcd.layer[l].xshift; |
| 994 | data <<= m_lcd.layer[l].xshift; |
| 1006 | 995 | } |
| 1007 | 996 | |
| 1008 | 997 | while ( i > 0 ) |
| 1009 | 998 | { |
| 1010 | | while ( ( state->m_lcd.layer[l].xshift < 8 ) && i ) |
| 999 | while ( ( m_lcd.layer[l].xshift < 8 ) && i ) |
| 1011 | 1000 | { |
| 1012 | 1001 | int colour; |
| 1013 | 1002 | /* Check for horinzontal flip */ |
| 1014 | | if ( gbcmap[ state->m_lcd.layer[l].xindex ] & 0x20 ) |
| 1003 | if ( gbcmap[ m_lcd.layer[l].xindex ] & 0x20 ) |
| 1015 | 1004 | { |
| 1016 | 1005 | colour = ( ( data & 0x0100 ) ? 2 : 0 ) | ( ( data & 0x0001 ) ? 1 : 0 ); |
| 1017 | 1006 | data >>= 1; |
| r20640 | r20641 | |
| 1021 | 1010 | colour = ( ( data & 0x8000 ) ? 2 : 0 ) | ( ( data & 0x0080 ) ? 1 : 0 ); |
| 1022 | 1011 | data <<= 1; |
| 1023 | 1012 | } |
| 1024 | | gb_plot_pixel( bitmap, xindex, state->m_lcd.current_line, state->m_lcd.cgb_bpal[ ( ! state->m_lcd.gbc_mode ) ? state->m_lcd.gb_bpal[colour] : ( ( ( gbcmap[ state->m_lcd.layer[l].xindex ] & 0x07 ) * 4 ) + colour ) ] ); |
| 1025 | | state->m_lcd.bg_zbuf[ xindex ] = colour + ( gbcmap[ state->m_lcd.layer[l].xindex ] & 0x80 ); |
| 1013 | gb_plot_pixel( bitmap, xindex, m_lcd.current_line, m_lcd.cgb_bpal[ ( ! m_lcd.gbc_mode ) ? m_lcd.gb_bpal[colour] : ( ( ( gbcmap[ m_lcd.layer[l].xindex ] & 0x07 ) * 4 ) + colour ) ] ); |
| 1014 | m_lcd.bg_zbuf[ xindex ] = colour + ( gbcmap[ m_lcd.layer[l].xindex ] & 0x80 ); |
| 1026 | 1015 | xindex++; |
| 1027 | | state->m_lcd.layer[l].xshift++; |
| 1016 | m_lcd.layer[l].xshift++; |
| 1028 | 1017 | i--; |
| 1029 | 1018 | } |
| 1030 | | if ( state->m_lcd.layer[l].xshift == 8 ) |
| 1019 | if ( m_lcd.layer[l].xshift == 8 ) |
| 1031 | 1020 | { |
| 1032 | 1021 | /* Take possible changes to SCROLLY into account */ |
| 1033 | 1022 | if ( l == 0 ) |
| 1034 | 1023 | { |
| 1035 | | state->m_lcd.layer[0].bgline = ( SCROLLY + state->m_lcd.current_line ) & 0xFF; |
| 1036 | | map = state->m_lcd.layer[l].bg_map + ( ( state->m_lcd.layer[l].bgline << 2 ) & 0x3E0 ); |
| 1037 | | gbcmap = state->m_lcd.layer[l].gbc_map + ( ( state->m_lcd.layer[l].bgline << 2 ) & 0x3E0 ); |
| 1024 | m_lcd.layer[0].bgline = ( SCROLLY + m_lcd.current_line ) & 0xFF; |
| 1025 | map = m_lcd.layer[l].bg_map + ( ( m_lcd.layer[l].bgline << 2 ) & 0x3E0 ); |
| 1026 | gbcmap = m_lcd.layer[l].gbc_map + ( ( m_lcd.layer[l].bgline << 2 ) & 0x3E0 ); |
| 1038 | 1027 | } |
| 1039 | 1028 | |
| 1040 | | state->m_lcd.layer[l].xindex = ( state->m_lcd.layer[l].xindex + 1 ) & 31; |
| 1041 | | state->m_lcd.layer[l].xshift = 0; |
| 1042 | | tiles = ( gbcmap[ state->m_lcd.layer[l].xindex ] & 0x08 ) ? state->m_lcd.gbc_chrgen : state->m_lcd.gb_chrgen; |
| 1029 | m_lcd.layer[l].xindex = ( m_lcd.layer[l].xindex + 1 ) & 31; |
| 1030 | m_lcd.layer[l].xshift = 0; |
| 1031 | tiles = ( gbcmap[ m_lcd.layer[l].xindex ] & 0x08 ) ? m_lcd.gbc_chrgen : m_lcd.gb_chrgen; |
| 1043 | 1032 | |
| 1044 | 1033 | /* Check for vertical flip */ |
| 1045 | | if ( gbcmap[ state->m_lcd.layer[l].xindex ] & 0x40 ) |
| 1034 | if ( gbcmap[ m_lcd.layer[l].xindex ] & 0x40 ) |
| 1046 | 1035 | { |
| 1047 | | tiles += ( ( 7 - ( state->m_lcd.layer[l].bgline & 0x07 ) ) << 1 ); |
| 1036 | tiles += ( ( 7 - ( m_lcd.layer[l].bgline & 0x07 ) ) << 1 ); |
| 1048 | 1037 | } |
| 1049 | 1038 | else |
| 1050 | 1039 | { |
| 1051 | | tiles += ( ( state->m_lcd.layer[l].bgline & 0x07 ) << 1 ); |
| 1040 | tiles += ( ( m_lcd.layer[l].bgline & 0x07 ) << 1 ); |
| 1052 | 1041 | } |
| 1053 | | tile_index = ( map[ state->m_lcd.layer[l].xindex ] ^ state->m_lcd.gb_tile_no_mod ) * 16; |
| 1042 | tile_index = ( map[ m_lcd.layer[l].xindex ] ^ m_lcd.gb_tile_no_mod ) * 16; |
| 1054 | 1043 | data = tiles[ tile_index ] | ( tiles[ tile_index + 1 ] << 8 ); |
| 1055 | 1044 | } |
| 1056 | 1045 | } |
| 1057 | 1046 | l++; |
| 1058 | 1047 | } |
| 1059 | | if ( state->m_lcd.end_x == 160 && ( LCDCONT & 0x02 ) ) |
| 1048 | if ( m_lcd.end_x == 160 && ( LCDCONT & 0x02 ) ) |
| 1060 | 1049 | { |
| 1061 | | cgb_update_sprites( machine ); |
| 1050 | cgb_update_sprites(); |
| 1062 | 1051 | } |
| 1063 | | state->m_lcd.start_x = state->m_lcd.end_x; |
| 1052 | m_lcd.start_x = m_lcd.end_x; |
| 1064 | 1053 | } |
| 1065 | 1054 | } |
| 1066 | 1055 | else |
| r20640 | r20641 | |
| 1068 | 1057 | if ( ! ( LCDCONT & 0x80 ) ) |
| 1069 | 1058 | { |
| 1070 | 1059 | /* Draw an empty line when LCD is disabled */ |
| 1071 | | if ( state->m_lcd.previous_line != state->m_lcd.current_line ) |
| 1060 | if ( m_lcd.previous_line != m_lcd.current_line ) |
| 1072 | 1061 | { |
| 1073 | | if ( state->m_lcd.current_line < 144 ) |
| 1062 | if ( m_lcd.current_line < 144 ) |
| 1074 | 1063 | { |
| 1075 | | screen_device *screen = machine.first_screen(); |
| 1064 | screen_device *screen = machine().first_screen(); |
| 1076 | 1065 | const rectangle &r1 = screen->visible_area(); |
| 1077 | | rectangle r(r1.min_x, r1.max_x, state->m_lcd.current_line, state->m_lcd.current_line); |
| 1078 | | bitmap.fill(( ! state->m_lcd.gbc_mode ) ? 0 : 32767 , r); |
| 1066 | rectangle r(r1.min_x, r1.max_x, m_lcd.current_line, m_lcd.current_line); |
| 1067 | bitmap.fill(( ! m_lcd.gbc_mode ) ? 0 : 32767 , r); |
| 1079 | 1068 | } |
| 1080 | | state->m_lcd.previous_line = state->m_lcd.current_line; |
| 1069 | m_lcd.previous_line = m_lcd.current_line; |
| 1081 | 1070 | } |
| 1082 | 1071 | } |
| 1083 | 1072 | } |
| r20640 | r20641 | |
| 1195 | 1184 | |
| 1196 | 1185 | TIMER_CALLBACK_MEMBER(gb_state::gb_video_init_vbl) |
| 1197 | 1186 | { |
| 1198 | | machine().device("maincpu")->execute().set_input_line(VBL_INT, ASSERT_LINE ); |
| 1187 | m_maincpu->set_input_line(VBL_INT, ASSERT_LINE ); |
| 1199 | 1188 | } |
| 1200 | 1189 | |
| 1201 | 1190 | MACHINE_START_MEMBER(gb_state,gb_video) |
| r20640 | r20641 | |
| 1216 | 1205 | return 0; |
| 1217 | 1206 | } |
| 1218 | 1207 | |
| 1219 | | void gb_video_reset( running_machine &machine, int mode ) |
| 1208 | void gb_state::gb_video_reset( int mode ) |
| 1220 | 1209 | { |
| 1221 | | gb_state *state = machine.driver_data<gb_state>(); |
| 1222 | 1210 | int i; |
| 1223 | 1211 | int vram_size = 0x2000; |
| 1224 | | address_space &space = machine.device("maincpu")->memory().space(AS_PROGRAM); |
| 1225 | | emu_timer *old_timer = state->m_lcd.lcd_timer; |
| 1212 | address_space &space = m_maincpu->space(AS_PROGRAM); |
| 1213 | emu_timer *old_timer = m_lcd.lcd_timer; |
| 1226 | 1214 | |
| 1227 | | memset( &state->m_lcd, 0, sizeof(state->m_lcd) ); |
| 1228 | | state->m_lcd.lcd_timer = old_timer; |
| 1215 | memset( &m_lcd, 0, sizeof(m_lcd) ); |
| 1216 | m_lcd.lcd_timer = old_timer; |
| 1229 | 1217 | |
| 1230 | 1218 | if (mode == GB_VIDEO_CGB) vram_size = 0x4000; |
| 1231 | 1219 | |
| 1232 | 1220 | /* free regions if already allocated */ |
| 1233 | | if (state->memregion("gfx1")->base()) machine.memory().region_free(":gfx1"); |
| 1234 | | if (state->memregion("gfx2")->base()) machine.memory().region_free(":gfx2"); |
| 1221 | if (memregion("gfx1")->base()) machine().memory().region_free(":gfx1"); |
| 1222 | if (memregion("gfx2")->base()) machine().memory().region_free(":gfx2"); |
| 1235 | 1223 | |
| 1236 | | state->m_lcd.gb_vram = machine.memory().region_alloc(":gfx1", vram_size, 1, ENDIANNESS_LITTLE ); |
| 1237 | | state->m_lcd.gb_oam = machine.memory().region_alloc(":gfx2", 0x100, 1, ENDIANNESS_LITTLE ); |
| 1238 | | memset( state->m_lcd.gb_vram->base(), 0, vram_size ); |
| 1224 | m_lcd.gb_vram = machine().memory().region_alloc(":gfx1", vram_size, 1, ENDIANNESS_LITTLE ); |
| 1225 | m_lcd.gb_oam = machine().memory().region_alloc(":gfx2", 0x100, 1, ENDIANNESS_LITTLE ); |
| 1226 | memset( m_lcd.gb_vram->base(), 0, vram_size ); |
| 1239 | 1227 | |
| 1240 | | state->m_lcd.gb_vram_ptr = state->m_lcd.gb_vram->base(); |
| 1241 | | state->m_lcd.gb_chrgen = state->m_lcd.gb_vram->base(); |
| 1242 | | state->m_lcd.gb_bgdtab = state->m_lcd.gb_vram->base() + 0x1C00; |
| 1243 | | state->m_lcd.gb_wndtab = state->m_lcd.gb_vram->base() + 0x1C00; |
| 1228 | m_lcd.gb_vram_ptr = m_lcd.gb_vram->base(); |
| 1229 | m_lcd.gb_chrgen = m_lcd.gb_vram->base(); |
| 1230 | m_lcd.gb_bgdtab = m_lcd.gb_vram->base() + 0x1C00; |
| 1231 | m_lcd.gb_wndtab = m_lcd.gb_vram->base() + 0x1C00; |
| 1244 | 1232 | |
| 1245 | | state->m_lcd.gb_vid_regs[0x06] = 0xFF; |
| 1233 | m_lcd.gb_vid_regs[0x06] = 0xFF; |
| 1246 | 1234 | for( i = 0x0c; i < _NR_GB_VID_REGS; i++ ) |
| 1247 | 1235 | { |
| 1248 | | state->m_lcd.gb_vid_regs[i] = 0xFF; |
| 1236 | m_lcd.gb_vid_regs[i] = 0xFF; |
| 1249 | 1237 | } |
| 1250 | 1238 | |
| 1251 | 1239 | LCDSTAT = 0x80; |
| 1252 | 1240 | LCDCONT = 0x00; /* Video hardware is turned off at boot time */ |
| 1253 | | state->m_lcd.current_line = CURLINE = CMPLINE = 0x00; |
| 1241 | m_lcd.current_line = CURLINE = CMPLINE = 0x00; |
| 1254 | 1242 | SCROLLX = SCROLLY = 0x00; |
| 1255 | 1243 | SPR0PAL = SPR1PAL = 0xFF; |
| 1256 | 1244 | WNDPOSX = WNDPOSY = 0x00; |
| r20640 | r20641 | |
| 1258 | 1246 | /* Initialize palette arrays */ |
| 1259 | 1247 | for( i = 0; i < 4; i++ ) |
| 1260 | 1248 | { |
| 1261 | | state->m_lcd.gb_bpal[i] = state->m_lcd.gb_spal0[i] = state->m_lcd.gb_spal1[i] = i; |
| 1249 | m_lcd.gb_bpal[i] = m_lcd.gb_spal0[i] = m_lcd.gb_spal1[i] = i; |
| 1262 | 1250 | } |
| 1263 | 1251 | |
| 1264 | 1252 | switch( mode ) |
| 1265 | 1253 | { |
| 1266 | 1254 | case GB_VIDEO_DMG: |
| 1267 | | state->m_lcd.lcd_timer->adjust(machine.device<cpu_device>("maincpu")->cycles_to_attotime(456)); |
| 1255 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(456)); |
| 1268 | 1256 | |
| 1269 | 1257 | /* set the scanline update function */ |
| 1270 | | state->update_scanline = gb_update_scanline; |
| 1258 | update_scanline = &gb_state::gb_update_scanline; |
| 1271 | 1259 | |
| 1272 | | memcpy( state->m_lcd.gb_oam->base(), dmg_oam_fingerprint, 0x100 ); |
| 1260 | memcpy( m_lcd.gb_oam->base(), dmg_oam_fingerprint, 0x100 ); |
| 1273 | 1261 | |
| 1274 | 1262 | break; |
| 1275 | 1263 | case GB_VIDEO_MGB: |
| 1276 | 1264 | /* set the scanline update function */ |
| 1277 | | state->update_scanline = gb_update_scanline; |
| 1265 | update_scanline = &gb_state::gb_update_scanline; |
| 1278 | 1266 | /* Initialize part of VRAM. This code must be deleted when we have added the bios dump */ |
| 1279 | 1267 | for( i = 1; i < 0x0D; i++ ) |
| 1280 | 1268 | { |
| 1281 | | state->m_lcd.gb_vram->base()[ 0x1903 + i ] = i; |
| 1282 | | state->m_lcd.gb_vram->base()[ 0x1923 + i ] = i + 0x0C; |
| 1269 | m_lcd.gb_vram->base()[ 0x1903 + i ] = i; |
| 1270 | m_lcd.gb_vram->base()[ 0x1923 + i ] = i + 0x0C; |
| 1283 | 1271 | } |
| 1284 | | state->m_lcd.gb_vram->base()[ 0x1910 ] = 0x19; |
| 1272 | m_lcd.gb_vram->base()[ 0x1910 ] = 0x19; |
| 1285 | 1273 | |
| 1286 | 1274 | |
| 1287 | | memcpy( state->m_lcd.gb_oam->base(), mgb_oam_fingerprint, 0x100 ); |
| 1275 | memcpy( m_lcd.gb_oam->base(), mgb_oam_fingerprint, 0x100 ); |
| 1288 | 1276 | |
| 1289 | 1277 | /* Make sure the VBlank interrupt is set when the first instruction gets executed */ |
| 1290 | | machine.scheduler().timer_set(machine.device<cpu_device>("maincpu")->cycles_to_attotime(1), timer_expired_delegate(FUNC(gb_state::gb_video_init_vbl),state)); |
| 1278 | machine().scheduler().timer_set(m_maincpu->cycles_to_attotime(1), timer_expired_delegate(FUNC(gb_state::gb_video_init_vbl),this)); |
| 1291 | 1279 | |
| 1292 | 1280 | /* Initialize some video registers */ |
| 1293 | | state->gb_video_w( space, 0x0, 0x91 ); /* LCDCONT */ |
| 1294 | | state->gb_video_w( space, 0x7, 0xFC ); /* BGRDPAL */ |
| 1295 | | state->gb_video_w( space, 0x8, 0xFC ); /* SPR0PAL */ |
| 1296 | | state->gb_video_w( space, 0x9, 0xFC ); /* SPR1PAL */ |
| 1281 | gb_video_w( space, 0x0, 0x91 ); /* LCDCONT */ |
| 1282 | gb_video_w( space, 0x7, 0xFC ); /* BGRDPAL */ |
| 1283 | gb_video_w( space, 0x8, 0xFC ); /* SPR0PAL */ |
| 1284 | gb_video_w( space, 0x9, 0xFC ); /* SPR1PAL */ |
| 1297 | 1285 | |
| 1298 | | CURLINE = state->m_lcd.current_line = 0; |
| 1286 | CURLINE = m_lcd.current_line = 0; |
| 1299 | 1287 | LCDSTAT = ( LCDSTAT & 0xF8 ) | 0x05; |
| 1300 | | state->m_lcd.mode = 1; |
| 1301 | | state->m_lcd.lcd_timer->adjust(machine.device<cpu_device>("maincpu")->cycles_to_attotime(60), GB_LCD_STATE_LY00_M0); |
| 1288 | m_lcd.mode = 1; |
| 1289 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(60), GB_LCD_STATE_LY00_M0); |
| 1302 | 1290 | |
| 1303 | 1291 | break; |
| 1304 | 1292 | case GB_VIDEO_SGB: |
| 1305 | 1293 | /* set the scanline update function */ |
| 1306 | | state->update_scanline = sgb_update_scanline; |
| 1294 | update_scanline = &gb_state::sgb_update_scanline; |
| 1307 | 1295 | |
| 1308 | 1296 | break; |
| 1309 | 1297 | |
| 1310 | 1298 | case GB_VIDEO_CGB: |
| 1311 | 1299 | /* set the scanline update function */ |
| 1312 | | state->update_scanline = cgb_update_scanline; |
| 1300 | update_scanline = &gb_state::cgb_update_scanline; |
| 1313 | 1301 | |
| 1314 | | memcpy( state->m_lcd.gb_oam->base(), cgb_oam_fingerprint, 0x100 ); |
| 1302 | memcpy( m_lcd.gb_oam->base(), cgb_oam_fingerprint, 0x100 ); |
| 1315 | 1303 | |
| 1316 | | state->m_lcd.gb_chrgen = state->m_lcd.gb_vram->base(); |
| 1317 | | state->m_lcd.gbc_chrgen = state->m_lcd.gb_vram->base() + 0x2000; |
| 1318 | | state->m_lcd.gb_bgdtab = state->m_lcd.gb_wndtab = state->m_lcd.gb_vram->base() + 0x1C00; |
| 1319 | | state->m_lcd.gbc_bgdtab = state->m_lcd.gbc_wndtab = state->m_lcd.gb_vram->base() + 0x3C00; |
| 1304 | m_lcd.gb_chrgen = m_lcd.gb_vram->base(); |
| 1305 | m_lcd.gbc_chrgen = m_lcd.gb_vram->base() + 0x2000; |
| 1306 | m_lcd.gb_bgdtab = m_lcd.gb_wndtab = m_lcd.gb_vram->base() + 0x1C00; |
| 1307 | m_lcd.gbc_bgdtab = m_lcd.gbc_wndtab = m_lcd.gb_vram->base() + 0x3C00; |
| 1320 | 1308 | |
| 1321 | 1309 | /* HDMA disabled */ |
| 1322 | | state->m_lcd.hdma_enabled = 0; |
| 1323 | | state->m_lcd.hdma_possible = 0; |
| 1310 | m_lcd.hdma_enabled = 0; |
| 1311 | m_lcd.hdma_possible = 0; |
| 1324 | 1312 | |
| 1325 | | state->m_lcd.gbc_mode = 1; |
| 1313 | m_lcd.gbc_mode = 1; |
| 1326 | 1314 | break; |
| 1327 | 1315 | } |
| 1328 | 1316 | } |
| 1329 | 1317 | |
| 1330 | | static void gbc_hdma(running_machine &machine, UINT16 length) |
| 1318 | |
| 1319 | void gb_state::gbc_hdma(UINT16 length) |
| 1331 | 1320 | { |
| 1332 | | gb_state *state = machine.driver_data<gb_state>(); |
| 1333 | 1321 | UINT16 src, dst; |
| 1334 | | address_space &space = machine.device("maincpu")->memory().space(AS_PROGRAM); |
| 1322 | address_space &space = m_maincpu->space(AS_PROGRAM); |
| 1335 | 1323 | |
| 1336 | 1324 | src = ((UINT16)HDMA1 << 8) | (HDMA2 & 0xF0); |
| 1337 | 1325 | dst = ((UINT16)(HDMA3 & 0x1F) << 8) | (HDMA4 & 0xF0); |
| r20640 | r20641 | |
| 1349 | 1337 | if( (HDMA5 & 0x7f) == 0x7f ) |
| 1350 | 1338 | { |
| 1351 | 1339 | HDMA5 = 0xff; |
| 1352 | | state->m_lcd.hdma_enabled = 0; |
| 1340 | m_lcd.hdma_enabled = 0; |
| 1353 | 1341 | } |
| 1354 | 1342 | } |
| 1355 | 1343 | |
| 1356 | | static void gb_increment_scanline( gb_state *state ) |
| 1344 | |
| 1345 | void gb_state::gb_increment_scanline() |
| 1357 | 1346 | { |
| 1358 | | state->m_lcd.current_line = ( state->m_lcd.current_line + 1 ) % 154; |
| 1347 | m_lcd.current_line = ( m_lcd.current_line + 1 ) % 154; |
| 1359 | 1348 | if ( LCDCONT & 0x80 ) |
| 1360 | 1349 | { |
| 1361 | | CURLINE = state->m_lcd.current_line; |
| 1350 | CURLINE = m_lcd.current_line; |
| 1362 | 1351 | } |
| 1363 | | if ( state->m_lcd.current_line == 0 ) |
| 1352 | if ( m_lcd.current_line == 0 ) |
| 1364 | 1353 | { |
| 1365 | | state->m_lcd.window_lines_drawn = 0; |
| 1354 | m_lcd.window_lines_drawn = 0; |
| 1366 | 1355 | } |
| 1367 | 1356 | } |
| 1368 | 1357 | |
| 1369 | 1358 | TIMER_CALLBACK_MEMBER(gb_state::gb_lcd_timer_proc) |
| 1370 | 1359 | { |
| 1371 | | gb_state *state = machine().driver_data<gb_state>(); |
| 1372 | 1360 | static const int sprite_cycles[] = { 0, 8, 20, 32, 44, 52, 64, 76, 88, 96, 108 }; |
| 1373 | 1361 | |
| 1374 | 1362 | m_lcd.state = param; |
| r20640 | r20641 | |
| 1386 | 1374 | if ( ! m_lcd.line_irq && ! m_lcd.delayed_line_irq ) |
| 1387 | 1375 | { |
| 1388 | 1376 | m_lcd.mode_irq = 1; |
| 1389 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1377 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1390 | 1378 | } |
| 1391 | 1379 | } |
| 1392 | 1380 | else |
| r20640 | r20641 | |
| 1394 | 1382 | m_lcd.mode_irq = 0; |
| 1395 | 1383 | } |
| 1396 | 1384 | } |
| 1397 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LYXX_M0); |
| 1385 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LYXX_M0); |
| 1398 | 1386 | break; |
| 1399 | 1387 | case GB_LCD_STATE_LYXX_M0: /* Switch to mode 0 */ |
| 1400 | 1388 | /* update current scanline */ |
| 1401 | | (*update_scanline)( machine() ); |
| 1389 | (this->*update_scanline)(); |
| 1402 | 1390 | /* Increment the number of window lines drawn if enabled */ |
| 1403 | 1391 | if ( m_lcd.layer[1].enabled ) |
| 1404 | 1392 | { |
| r20640 | r20641 | |
| 1419 | 1407 | if ( ( SCROLLX & 0x03 ) == 0x03 ) |
| 1420 | 1408 | { |
| 1421 | 1409 | m_lcd.scrollx_adjust += 4; |
| 1422 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LYXX_M0_SCX3); |
| 1410 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LYXX_M0_SCX3); |
| 1423 | 1411 | break; |
| 1424 | 1412 | } |
| 1425 | 1413 | case GB_LCD_STATE_LYXX_M0_SCX3: |
| r20640 | r20641 | |
| 1427 | 1415 | if ( ! m_lcd.mode_irq && ( LCDSTAT & 0x08 ) && |
| 1428 | 1416 | ( ( ! m_lcd.line_irq && m_lcd.delayed_line_irq ) || ! ( LCDSTAT & 0x40 ) ) ) |
| 1429 | 1417 | { |
| 1430 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1418 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1431 | 1419 | } |
| 1432 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(196 - m_lcd.scrollx_adjust - m_lcd.sprite_cycles), GB_LCD_STATE_LYXX_M0_PRE_INC); |
| 1420 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(196 - m_lcd.scrollx_adjust - m_lcd.sprite_cycles), GB_LCD_STATE_LYXX_M0_PRE_INC); |
| 1433 | 1421 | break; |
| 1434 | 1422 | case GB_LCD_STATE_LYXX_M0_PRE_INC: /* Just before incrementing the line counter go to mode 2 internally */ |
| 1435 | 1423 | if ( CURLINE < 143 ) |
| r20640 | r20641 | |
| 1443 | 1431 | if ( ! m_lcd.line_irq && ! m_lcd.delayed_line_irq ) |
| 1444 | 1432 | { |
| 1445 | 1433 | m_lcd.mode_irq = 1; |
| 1446 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1434 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1447 | 1435 | } |
| 1448 | 1436 | } |
| 1449 | 1437 | else |
| r20640 | r20641 | |
| 1452 | 1440 | } |
| 1453 | 1441 | } |
| 1454 | 1442 | } |
| 1455 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LYXX_M0_INC); |
| 1443 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LYXX_M0_INC); |
| 1456 | 1444 | break; |
| 1457 | 1445 | case GB_LCD_STATE_LYXX_M0_INC: /* Increment LY, stay in M0 for 4 more cycles */ |
| 1458 | | gb_increment_scanline(this); |
| 1446 | gb_increment_scanline(); |
| 1459 | 1447 | m_lcd.delayed_line_irq = m_lcd.line_irq; |
| 1460 | 1448 | m_lcd.triggering_line_irq = ( ( CMPLINE == CURLINE ) && ( LCDSTAT & 0x40 ) ) ? 1 : 0; |
| 1461 | 1449 | m_lcd.line_irq = 0; |
| 1462 | 1450 | if ( ! m_lcd.mode_irq && ! m_lcd.delayed_line_irq && m_lcd.triggering_line_irq && ! m_lcd.triggering_mode_irq ) |
| 1463 | 1451 | { |
| 1464 | 1452 | m_lcd.line_irq = m_lcd.triggering_line_irq; |
| 1465 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1453 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1466 | 1454 | } |
| 1467 | 1455 | /* Reset LY==LYC STAT bit */ |
| 1468 | 1456 | LCDSTAT &= 0xFB; |
| 1469 | 1457 | /* Check if we're going into VBlank next */ |
| 1470 | 1458 | if ( CURLINE == 144 ) |
| 1471 | 1459 | { |
| 1472 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LY9X_M1); |
| 1460 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LY9X_M1); |
| 1473 | 1461 | } |
| 1474 | 1462 | else |
| 1475 | 1463 | { |
| r20640 | r20641 | |
| 1480 | 1468 | ( ( ! m_lcd.triggering_line_irq && ! m_lcd.delayed_line_irq ) || ! ( LCDSTAT & 0x40 ) ) ) |
| 1481 | 1469 | { |
| 1482 | 1470 | m_lcd.mode_irq = 1; |
| 1483 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1471 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1484 | 1472 | } |
| 1485 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LYXX_M2); |
| 1473 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LYXX_M2); |
| 1486 | 1474 | } |
| 1487 | 1475 | break; |
| 1488 | 1476 | case GB_LCD_STATE_LY00_M2: /* Switch to mode 2 on line #0 */ |
| r20640 | r20641 | |
| 1493 | 1481 | /* Generate lcd interrupt if requested */ |
| 1494 | 1482 | if ( ( LCDSTAT & 0x20 ) && ! m_lcd.line_irq ) |
| 1495 | 1483 | { |
| 1496 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1484 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1497 | 1485 | } |
| 1498 | 1486 | /* Check for regular compensation of x-scroll register */ |
| 1499 | 1487 | m_lcd.scrollx_adjust = ( SCROLLX & 0x04 ) ? 4 : 0; |
| 1500 | 1488 | /* Mode 2 lasts approximately 80 clock cycles */ |
| 1501 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(80), GB_LCD_STATE_LYXX_M3); |
| 1489 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(80), GB_LCD_STATE_LYXX_M3); |
| 1502 | 1490 | break; |
| 1503 | 1491 | case GB_LCD_STATE_LYXX_M2: /* Switch to mode 2 */ |
| 1504 | 1492 | /* Update STAT register to the correct state */ |
| r20640 | r20641 | |
| 1508 | 1496 | if ( ( m_lcd.delayed_line_irq && m_lcd.triggering_line_irq && ! ( LCDSTAT & 0x20 ) ) || |
| 1509 | 1497 | ( ! m_lcd.mode_irq && ! m_lcd.line_irq && ! m_lcd.delayed_line_irq && m_lcd.triggering_mode_irq ) ) |
| 1510 | 1498 | { |
| 1511 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1499 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1512 | 1500 | } |
| 1513 | 1501 | m_lcd.line_irq = m_lcd.triggering_line_irq; |
| 1514 | 1502 | m_lcd.triggering_mode_irq = 0; |
| r20640 | r20641 | |
| 1520 | 1508 | /* Check for regular compensation of x-scroll register */ |
| 1521 | 1509 | m_lcd.scrollx_adjust = ( SCROLLX & 0x04 ) ? 4 : 0; |
| 1522 | 1510 | /* Mode 2 last for approximately 80 clock cycles */ |
| 1523 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(80), GB_LCD_STATE_LYXX_M3); |
| 1511 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(80), GB_LCD_STATE_LYXX_M3); |
| 1524 | 1512 | break; |
| 1525 | 1513 | case GB_LCD_STATE_LYXX_M3: /* Switch to mode 3 */ |
| 1526 | | gb_select_sprites(this); |
| 1514 | gb_select_sprites(); |
| 1527 | 1515 | m_lcd.sprite_cycles = sprite_cycles[ m_lcd.sprCount ]; |
| 1528 | 1516 | /* Set Mode 3 lcdstate */ |
| 1529 | 1517 | m_lcd.mode = 3; |
| r20640 | r20641 | |
| 1531 | 1519 | m_lcd.vram_locked = LOCKED; |
| 1532 | 1520 | /* Check for compensations of x-scroll register */ |
| 1533 | 1521 | /* Mode 3 lasts for approximately 172+cycles needed to handle sprites clock cycles */ |
| 1534 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(168 + m_lcd.scrollx_adjust + m_lcd.sprite_cycles), GB_LCD_STATE_LYXX_PRE_M0); |
| 1522 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(168 + m_lcd.scrollx_adjust + m_lcd.sprite_cycles), GB_LCD_STATE_LYXX_PRE_M0); |
| 1535 | 1523 | m_lcd.start_x = -1; |
| 1536 | 1524 | break; |
| 1537 | 1525 | case GB_LCD_STATE_LY9X_M1: /* Switch to or stay in mode 1 */ |
| 1538 | 1526 | if ( CURLINE == 144 ) |
| 1539 | 1527 | { |
| 1540 | 1528 | /* Trigger VBlank interrupt */ |
| 1541 | | machine().device("maincpu")->execute().set_input_line(VBL_INT, ASSERT_LINE ); |
| 1529 | m_maincpu->set_input_line(VBL_INT, ASSERT_LINE ); |
| 1542 | 1530 | /* Set VBlank lcdstate */ |
| 1543 | 1531 | m_lcd.mode = 1; |
| 1544 | 1532 | LCDSTAT = (LCDSTAT & 0xFC) | 0x01; |
| 1545 | 1533 | /* Trigger LCD interrupt if requested */ |
| 1546 | 1534 | if ( LCDSTAT & 0x10 ) |
| 1547 | 1535 | { |
| 1548 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1536 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1549 | 1537 | } |
| 1550 | 1538 | } |
| 1551 | 1539 | /* Check if LY==LYC STAT bit should be set */ |
| r20640 | r20641 | |
| 1555 | 1543 | } |
| 1556 | 1544 | if ( m_lcd.delayed_line_irq && m_lcd.triggering_line_irq ) |
| 1557 | 1545 | { |
| 1558 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1546 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1559 | 1547 | } |
| 1560 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(452), GB_LCD_STATE_LY9X_M1_INC); |
| 1548 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(452), GB_LCD_STATE_LY9X_M1_INC); |
| 1561 | 1549 | break; |
| 1562 | 1550 | case GB_LCD_STATE_LY9X_M1_INC: /* Increment scanline counter */ |
| 1563 | | gb_increment_scanline(this); |
| 1551 | gb_increment_scanline(); |
| 1564 | 1552 | m_lcd.delayed_line_irq = m_lcd.line_irq; |
| 1565 | 1553 | m_lcd.triggering_line_irq = ( ( CMPLINE == CURLINE ) && ( LCDSTAT & 0x40 ) ) ? 1 : 0; |
| 1566 | 1554 | m_lcd.line_irq = 0; |
| 1567 | 1555 | if ( ! m_lcd.delayed_line_irq && m_lcd.triggering_line_irq ) |
| 1568 | 1556 | { |
| 1569 | 1557 | m_lcd.line_irq = m_lcd.triggering_line_irq; |
| 1570 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1558 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1571 | 1559 | } |
| 1572 | 1560 | /* Reset LY==LYC STAT bit */ |
| 1573 | 1561 | LCDSTAT &= 0xFB; |
| 1574 | 1562 | if ( m_lcd.current_line == 153 ) |
| 1575 | 1563 | { |
| 1576 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LY00_M1); |
| 1564 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LY00_M1); |
| 1577 | 1565 | } |
| 1578 | 1566 | else |
| 1579 | 1567 | { |
| 1580 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LY9X_M1); |
| 1568 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LY9X_M1); |
| 1581 | 1569 | } |
| 1582 | 1570 | break; |
| 1583 | 1571 | case GB_LCD_STATE_LY00_M1: /* we stay in VBlank but current line counter should already be incremented */ |
| r20640 | r20641 | |
| 1586 | 1574 | { |
| 1587 | 1575 | if ( m_lcd.triggering_line_irq ) |
| 1588 | 1576 | { |
| 1589 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1577 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1590 | 1578 | } |
| 1591 | 1579 | } |
| 1592 | 1580 | m_lcd.delayed_line_irq = m_lcd.delayed_line_irq | m_lcd.line_irq; |
| r20640 | r20641 | |
| 1594 | 1582 | { |
| 1595 | 1583 | LCDSTAT |= 0x04; |
| 1596 | 1584 | } |
| 1597 | | gb_increment_scanline(this); |
| 1585 | gb_increment_scanline(); |
| 1598 | 1586 | m_lcd.triggering_line_irq = ( ( CMPLINE == CURLINE ) && ( LCDSTAT & 0x40 ) ) ? 1 : 0; |
| 1599 | 1587 | m_lcd.line_irq = 0; |
| 1600 | 1588 | LCDSTAT &= 0xFB; |
| 1601 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4/*8*/), GB_LCD_STATE_LY00_M1_1); |
| 1589 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4/*8*/), GB_LCD_STATE_LY00_M1_1); |
| 1602 | 1590 | break; |
| 1603 | 1591 | case GB_LCD_STATE_LY00_M1_1: |
| 1604 | 1592 | if ( ! m_lcd.delayed_line_irq && m_lcd.triggering_line_irq ) |
| 1605 | 1593 | { |
| 1606 | 1594 | m_lcd.line_irq = m_lcd.triggering_line_irq; |
| 1607 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1595 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1608 | 1596 | } |
| 1609 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LY00_M1_2); |
| 1597 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LY00_M1_2); |
| 1610 | 1598 | break; |
| 1611 | 1599 | case GB_LCD_STATE_LY00_M1_2: /* Rest of line #0 during VBlank */ |
| 1612 | 1600 | if ( m_lcd.delayed_line_irq && m_lcd.triggering_line_irq ) |
| 1613 | 1601 | { |
| 1614 | 1602 | m_lcd.line_irq = m_lcd.triggering_line_irq; |
| 1615 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1603 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1616 | 1604 | } |
| 1617 | 1605 | if ( CURLINE == CMPLINE ) |
| 1618 | 1606 | { |
| 1619 | 1607 | LCDSTAT |= 0x04; |
| 1620 | 1608 | } |
| 1621 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(444), GB_LCD_STATE_LY00_M0); |
| 1609 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(444), GB_LCD_STATE_LY00_M0); |
| 1622 | 1610 | break; |
| 1623 | 1611 | case GB_LCD_STATE_LY00_M0: /* The STAT register seems to go to 0 for about 4 cycles */ |
| 1624 | 1612 | /* Set Mode 0 lcdstat */ |
| 1625 | 1613 | m_lcd.mode = 0; |
| 1626 | 1614 | LCDSTAT = ( LCDSTAT & 0xFC ); |
| 1627 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LY00_M2); |
| 1615 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LY00_M2); |
| 1628 | 1616 | break; |
| 1629 | 1617 | } |
| 1630 | 1618 | } |
| 1631 | 1619 | else |
| 1632 | 1620 | { |
| 1633 | | gb_increment_scanline(this); |
| 1621 | gb_increment_scanline(); |
| 1634 | 1622 | if ( m_lcd.current_line < 144 ) |
| 1635 | 1623 | { |
| 1636 | | (*update_scanline)( machine() ); |
| 1624 | (this->*update_scanline)(); |
| 1637 | 1625 | } |
| 1638 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(456)); |
| 1626 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(456)); |
| 1639 | 1627 | } |
| 1640 | 1628 | } |
| 1641 | 1629 | |
| 1642 | 1630 | TIMER_CALLBACK_MEMBER(gb_state::gbc_lcd_timer_proc) |
| 1643 | 1631 | { |
| 1644 | | gb_state *state = machine().driver_data<gb_state>(); |
| 1645 | 1632 | static const int sprite_cycles[] = { 0, 8, 20, 32, 44, 52, 64, 76, 88, 96, 108 }; |
| 1646 | 1633 | |
| 1647 | 1634 | m_lcd.state = param; |
| r20640 | r20641 | |
| 1659 | 1646 | if ( ! m_lcd.line_irq && ! m_lcd.delayed_line_irq ) |
| 1660 | 1647 | { |
| 1661 | 1648 | m_lcd.mode_irq = 1; |
| 1662 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1649 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1663 | 1650 | } |
| 1664 | 1651 | } |
| 1665 | 1652 | else |
| r20640 | r20641 | |
| 1667 | 1654 | m_lcd.mode_irq = 0; |
| 1668 | 1655 | } |
| 1669 | 1656 | } |
| 1670 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LYXX_M0); |
| 1657 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LYXX_M0); |
| 1671 | 1658 | break; |
| 1672 | 1659 | case GB_LCD_STATE_LYXX_M0: /* Switch to mode 0 */ |
| 1673 | 1660 | /* update current scanline */ |
| 1674 | | (*update_scanline)( machine() ); |
| 1661 | (this->*update_scanline)(); |
| 1675 | 1662 | /* Increment the number of window lines drawn if enabled */ |
| 1676 | 1663 | if ( m_lcd.layer[1].enabled ) |
| 1677 | 1664 | { |
| r20640 | r20641 | |
| 1693 | 1680 | if ( ( SCROLLX & 0x03 ) == 0x03 ) |
| 1694 | 1681 | { |
| 1695 | 1682 | m_lcd.scrollx_adjust += 4; |
| 1696 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LYXX_M0_SCX3); |
| 1683 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LYXX_M0_SCX3); |
| 1697 | 1684 | break; |
| 1698 | 1685 | } |
| 1699 | 1686 | case GB_LCD_STATE_LYXX_M0_SCX3: |
| r20640 | r20641 | |
| 1701 | 1688 | if ( ! m_lcd.mode_irq && m_lcd.triggering_mode_irq && |
| 1702 | 1689 | ( ( ! m_lcd.line_irq && m_lcd.delayed_line_irq ) || ! ( LCDSTAT & 0x40 ) ) ) |
| 1703 | 1690 | { |
| 1704 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1691 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1705 | 1692 | m_lcd.triggering_mode_irq = 0; |
| 1706 | 1693 | } |
| 1707 | 1694 | if ( ( SCROLLX & 0x03 ) == 0x03 ) |
| 1708 | 1695 | { |
| 1709 | 1696 | m_lcd.pal_locked = UNLOCKED; |
| 1710 | 1697 | } |
| 1711 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LYXX_M0_GBC_PAL); |
| 1698 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LYXX_M0_GBC_PAL); |
| 1712 | 1699 | break; |
| 1713 | 1700 | case GB_LCD_STATE_LYXX_M0_GBC_PAL: |
| 1714 | 1701 | m_lcd.pal_locked = UNLOCKED; |
| 1715 | 1702 | /* Check for HBLANK DMA */ |
| 1716 | 1703 | if( m_lcd.hdma_enabled ) |
| 1717 | 1704 | { |
| 1718 | | gbc_hdma(machine(), 0x10); |
| 1705 | gbc_hdma(0x10); |
| 1719 | 1706 | // cpunum_set_reg( 0, LR35902_DMA_CYCLES, 36 ); |
| 1720 | 1707 | } |
| 1721 | 1708 | else |
| 1722 | 1709 | { |
| 1723 | 1710 | m_lcd.hdma_possible = 1; |
| 1724 | 1711 | } |
| 1725 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(192 - m_lcd.scrollx_adjust - m_lcd.sprite_cycles), GB_LCD_STATE_LYXX_M0_PRE_INC); |
| 1712 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(192 - m_lcd.scrollx_adjust - m_lcd.sprite_cycles), GB_LCD_STATE_LYXX_M0_PRE_INC); |
| 1726 | 1713 | break; |
| 1727 | 1714 | case GB_LCD_STATE_LYXX_M0_PRE_INC: /* Just before incrementing the line counter go to mode 2 internally */ |
| 1728 | 1715 | m_lcd.cmp_line = CMPLINE; |
| r20640 | r20641 | |
| 1736 | 1723 | if ( ! m_lcd.line_irq && ! m_lcd.delayed_line_irq ) |
| 1737 | 1724 | { |
| 1738 | 1725 | m_lcd.mode_irq = 1; |
| 1739 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1726 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1740 | 1727 | } |
| 1741 | 1728 | } |
| 1742 | 1729 | else |
| r20640 | r20641 | |
| 1745 | 1732 | } |
| 1746 | 1733 | } |
| 1747 | 1734 | } |
| 1748 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LYXX_M0_INC); |
| 1735 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LYXX_M0_INC); |
| 1749 | 1736 | break; |
| 1750 | 1737 | case GB_LCD_STATE_LYXX_M0_INC: /* Increment LY, stay in M0 for 4 more cycles */ |
| 1751 | | gb_increment_scanline(this); |
| 1738 | gb_increment_scanline(); |
| 1752 | 1739 | m_lcd.delayed_line_irq = m_lcd.line_irq; |
| 1753 | 1740 | m_lcd.triggering_line_irq = ( ( m_lcd.cmp_line == CURLINE ) && ( LCDSTAT & 0x40 ) ) ? 1 : 0; |
| 1754 | 1741 | m_lcd.line_irq = 0; |
| 1755 | 1742 | if ( ! m_lcd.mode_irq && ! m_lcd.delayed_line_irq && m_lcd.triggering_line_irq && ! ( LCDSTAT & 0x20 ) ) |
| 1756 | 1743 | { |
| 1757 | 1744 | m_lcd.line_irq = m_lcd.triggering_line_irq; |
| 1758 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1745 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1759 | 1746 | } |
| 1760 | 1747 | m_lcd.hdma_possible = 0; |
| 1761 | 1748 | /* Check if we're going into VBlank next */ |
| 1762 | 1749 | if ( CURLINE == 144 ) |
| 1763 | 1750 | { |
| 1764 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LY9X_M1); |
| 1751 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LY9X_M1); |
| 1765 | 1752 | } |
| 1766 | 1753 | else |
| 1767 | 1754 | { |
| r20640 | r20641 | |
| 1772 | 1759 | ( ( ! m_lcd.triggering_line_irq && ! m_lcd.delayed_line_irq ) || ! ( LCDSTAT & 0x40 ) ) ) |
| 1773 | 1760 | { |
| 1774 | 1761 | m_lcd.mode_irq = 1; |
| 1775 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1762 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1776 | 1763 | } |
| 1777 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LYXX_M2); |
| 1764 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LYXX_M2); |
| 1778 | 1765 | } |
| 1779 | 1766 | break; |
| 1780 | 1767 | case GB_LCD_STATE_LY00_M2: /* Switch to mode 2 on line #0 */ |
| r20640 | r20641 | |
| 1785 | 1772 | /* Generate lcd interrupt if requested */ |
| 1786 | 1773 | if ( ( LCDSTAT & 0x20 ) && ! m_lcd.line_irq ) |
| 1787 | 1774 | { |
| 1788 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1775 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1789 | 1776 | } |
| 1790 | 1777 | /* Check for regular compensation of x-scroll register */ |
| 1791 | 1778 | m_lcd.scrollx_adjust = ( SCROLLX & 0x04 ) ? 4 : 0; |
| 1792 | 1779 | /* Mode 2 lasts approximately 80 clock cycles */ |
| 1793 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(80), GB_LCD_STATE_LYXX_M3); |
| 1780 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(80), GB_LCD_STATE_LYXX_M3); |
| 1794 | 1781 | break; |
| 1795 | 1782 | case GB_LCD_STATE_LYXX_M2: /* Switch to mode 2 */ |
| 1796 | 1783 | /* Update STAT register to the correct state */ |
| r20640 | r20641 | |
| 1800 | 1787 | if ( ( m_lcd.delayed_line_irq && m_lcd.triggering_line_irq && ! ( LCDSTAT & 0x20 ) ) || |
| 1801 | 1788 | ( !m_lcd.mode_irq && ! m_lcd.line_irq && ! m_lcd.delayed_line_irq && ( LCDSTAT & 0x20 ) ) ) |
| 1802 | 1789 | { |
| 1803 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1790 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1804 | 1791 | } |
| 1805 | 1792 | m_lcd.line_irq = m_lcd.triggering_line_irq; |
| 1806 | 1793 | /* Check if LY==LYC STAT bit should be set */ |
| r20640 | r20641 | |
| 1815 | 1802 | /* Check for regular compensation of x-scroll register */ |
| 1816 | 1803 | m_lcd.scrollx_adjust = ( SCROLLX & 0x04 ) ? 4 : 0; |
| 1817 | 1804 | /* Mode 2 last for approximately 80 clock cycles */ |
| 1818 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(80), GB_LCD_STATE_LYXX_M3); |
| 1805 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(80), GB_LCD_STATE_LYXX_M3); |
| 1819 | 1806 | break; |
| 1820 | 1807 | case GB_LCD_STATE_LYXX_M3: /* Switch to mode 3 */ |
| 1821 | | gb_select_sprites(this); |
| 1808 | gb_select_sprites(); |
| 1822 | 1809 | m_lcd.sprite_cycles = sprite_cycles[ m_lcd.sprCount ]; |
| 1823 | 1810 | /* Set Mode 3 lcdstate */ |
| 1824 | 1811 | m_lcd.mode = 3; |
| r20640 | r20641 | |
| 1827 | 1814 | m_lcd.pal_locked = LOCKED; |
| 1828 | 1815 | /* Check for compensations of x-scroll register */ |
| 1829 | 1816 | /* Mode 3 lasts for approximately 172+cycles needed to handle sprites clock cycles */ |
| 1830 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(168 + m_lcd.scrollx_adjust + m_lcd.sprite_cycles), GB_LCD_STATE_LYXX_PRE_M0); |
| 1817 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(168 + m_lcd.scrollx_adjust + m_lcd.sprite_cycles), GB_LCD_STATE_LYXX_PRE_M0); |
| 1831 | 1818 | m_lcd.start_x = -1; |
| 1832 | 1819 | break; |
| 1833 | 1820 | case GB_LCD_STATE_LY9X_M1: /* Switch to or stay in mode 1 */ |
| 1834 | 1821 | if ( CURLINE == 144 ) |
| 1835 | 1822 | { |
| 1836 | 1823 | /* Trigger VBlank interrupt */ |
| 1837 | | machine().device("maincpu")->execute().set_input_line(VBL_INT, ASSERT_LINE ); |
| 1824 | m_maincpu->set_input_line(VBL_INT, ASSERT_LINE ); |
| 1838 | 1825 | /* Set VBlank lcdstate */ |
| 1839 | 1826 | m_lcd.mode = 1; |
| 1840 | 1827 | LCDSTAT = (LCDSTAT & 0xFC) | 0x01; |
| 1841 | 1828 | /* Trigger LCD interrupt if requested */ |
| 1842 | 1829 | if ( LCDSTAT & 0x10 ) |
| 1843 | 1830 | { |
| 1844 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1831 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1845 | 1832 | } |
| 1846 | 1833 | } |
| 1847 | 1834 | /* Check if LY==LYC STAT bit should be set */ |
| r20640 | r20641 | |
| 1855 | 1842 | } |
| 1856 | 1843 | if ( m_lcd.delayed_line_irq && m_lcd.triggering_line_irq ) |
| 1857 | 1844 | { |
| 1858 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1845 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1859 | 1846 | } |
| 1860 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(452), GB_LCD_STATE_LY9X_M1_INC); |
| 1847 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(452), GB_LCD_STATE_LY9X_M1_INC); |
| 1861 | 1848 | break; |
| 1862 | 1849 | case GB_LCD_STATE_LY9X_M1_INC: /* Increment scanline counter */ |
| 1863 | | gb_increment_scanline(this); |
| 1850 | gb_increment_scanline(); |
| 1864 | 1851 | m_lcd.delayed_line_irq = m_lcd.line_irq; |
| 1865 | 1852 | m_lcd.triggering_line_irq = ( ( CMPLINE == CURLINE ) && ( LCDSTAT & 0x40 ) ) ? 1 : 0; |
| 1866 | 1853 | m_lcd.line_irq = 0; |
| 1867 | 1854 | if ( ! m_lcd.delayed_line_irq && m_lcd.triggering_line_irq ) |
| 1868 | 1855 | { |
| 1869 | 1856 | m_lcd.line_irq = m_lcd.triggering_line_irq; |
| 1870 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1857 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1871 | 1858 | } |
| 1872 | 1859 | if ( m_lcd.current_line == 153 ) |
| 1873 | 1860 | { |
| 1874 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LY00_M1); |
| 1861 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LY00_M1); |
| 1875 | 1862 | } |
| 1876 | 1863 | else |
| 1877 | 1864 | { |
| 1878 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LY9X_M1); |
| 1865 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LY9X_M1); |
| 1879 | 1866 | } |
| 1880 | 1867 | break; |
| 1881 | 1868 | case GB_LCD_STATE_LY00_M1: /* we stay in VBlank but current line counter should already be incremented */ |
| r20640 | r20641 | |
| 1884 | 1871 | { |
| 1885 | 1872 | if ( m_lcd.triggering_line_irq ) |
| 1886 | 1873 | { |
| 1887 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1874 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1888 | 1875 | } |
| 1889 | 1876 | } |
| 1890 | 1877 | m_lcd.delayed_line_irq = m_lcd.delayed_line_irq | m_lcd.line_irq; |
| r20640 | r20641 | |
| 1896 | 1883 | { |
| 1897 | 1884 | LCDSTAT &= ~0x04; |
| 1898 | 1885 | } |
| 1899 | | gb_increment_scanline(this); |
| 1886 | gb_increment_scanline(); |
| 1900 | 1887 | m_lcd.triggering_line_irq = ( ( CMPLINE == CURLINE ) && ( LCDSTAT & 0x40 ) ) ? 1 : 0; |
| 1901 | 1888 | m_lcd.line_irq = 0; |
| 1902 | 1889 | LCDSTAT &= 0xFB; |
| 1903 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LY00_M1_1); |
| 1890 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LY00_M1_1); |
| 1904 | 1891 | break; |
| 1905 | 1892 | case GB_LCD_STATE_LY00_M1_1: |
| 1906 | 1893 | if ( ! m_lcd.delayed_line_irq && m_lcd.triggering_line_irq ) |
| 1907 | 1894 | { |
| 1908 | 1895 | m_lcd.line_irq = m_lcd.triggering_line_irq; |
| 1909 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1896 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1910 | 1897 | } |
| 1911 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LY00_M1_2); |
| 1898 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LY00_M1_2); |
| 1912 | 1899 | break; |
| 1913 | 1900 | case GB_LCD_STATE_LY00_M1_2: /* Rest of line #0 during VBlank */ |
| 1914 | 1901 | if ( m_lcd.delayed_line_irq && m_lcd.triggering_line_irq ) |
| 1915 | 1902 | { |
| 1916 | 1903 | m_lcd.line_irq = m_lcd.triggering_line_irq; |
| 1917 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1904 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 1918 | 1905 | } |
| 1919 | 1906 | if ( CURLINE == CMPLINE ) |
| 1920 | 1907 | { |
| r20640 | r20641 | |
| 1924 | 1911 | { |
| 1925 | 1912 | LCDSTAT &= ~0x04; |
| 1926 | 1913 | } |
| 1927 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(444), GB_LCD_STATE_LY00_M0); |
| 1914 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(444), GB_LCD_STATE_LY00_M0); |
| 1928 | 1915 | break; |
| 1929 | 1916 | case GB_LCD_STATE_LY00_M0: /* The STAT register seems to go to 0 for about 4 cycles */ |
| 1930 | 1917 | /* Set Mode 0 lcdstat */ |
| 1931 | 1918 | m_lcd.mode = 0; |
| 1932 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(4), GB_LCD_STATE_LY00_M2); |
| 1919 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(4), GB_LCD_STATE_LY00_M2); |
| 1933 | 1920 | break; |
| 1934 | 1921 | } |
| 1935 | 1922 | } |
| 1936 | 1923 | else |
| 1937 | 1924 | { |
| 1938 | | gb_increment_scanline(this); |
| 1925 | gb_increment_scanline(); |
| 1939 | 1926 | if ( m_lcd.current_line < 144 ) |
| 1940 | 1927 | { |
| 1941 | | (*update_scanline)( machine() ); |
| 1928 | (this->*update_scanline)(); |
| 1942 | 1929 | } |
| 1943 | | m_lcd.lcd_timer->adjust(machine().device<cpu_device>("maincpu")->cycles_to_attotime(456)); |
| 1930 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(456)); |
| 1944 | 1931 | } |
| 1945 | 1932 | } |
| 1946 | 1933 | |
| 1947 | | static void gb_lcd_switch_on( running_machine &machine ) |
| 1934 | |
| 1935 | void gb_state::gb_lcd_switch_on() |
| 1948 | 1936 | { |
| 1949 | | gb_state *state = machine.driver_data<gb_state>(); |
| 1950 | | state->m_lcd.current_line = 0; |
| 1951 | | state->m_lcd.previous_line = 153; |
| 1952 | | state->m_lcd.window_lines_drawn = 0; |
| 1953 | | state->m_lcd.line_irq = 0; |
| 1954 | | state->m_lcd.delayed_line_irq = 0; |
| 1955 | | state->m_lcd.mode = 0; |
| 1956 | | state->m_lcd.oam_locked = LOCKED; /* TODO: Investigate whether this OAM locking is correct. */ |
| 1937 | m_lcd.current_line = 0; |
| 1938 | m_lcd.previous_line = 153; |
| 1939 | m_lcd.window_lines_drawn = 0; |
| 1940 | m_lcd.line_irq = 0; |
| 1941 | m_lcd.delayed_line_irq = 0; |
| 1942 | m_lcd.mode = 0; |
| 1943 | m_lcd.oam_locked = LOCKED; /* TODO: Investigate whether this OAM locking is correct. */ |
| 1957 | 1944 | /* Check for LY=LYC coincidence */ |
| 1958 | 1945 | if ( CURLINE == CMPLINE ) |
| 1959 | 1946 | { |
| r20640 | r20641 | |
| 1961 | 1948 | /* Generate lcd interrupt if requested */ |
| 1962 | 1949 | if ( LCDSTAT & 0x40 ) |
| 1963 | 1950 | { |
| 1964 | | machine.device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 1951 | m_maincpu->set_input_line( LCD_INT, ASSERT_LINE ); |
| 1965 | 1952 | } |
| 1966 | 1953 | } |
| 1967 | | state->m_lcd.state = GB_LCD_STATE_LY00_M2; |
| 1968 | | state->m_lcd.lcd_timer->adjust(machine.device<cpu_device>("maincpu")->cycles_to_attotime(80), GB_LCD_STATE_LYXX_M3); |
| 1954 | m_lcd.state = GB_LCD_STATE_LY00_M2; |
| 1955 | m_lcd.lcd_timer->adjust(m_maincpu->cycles_to_attotime(80), GB_LCD_STATE_LYXX_M3); |
| 1969 | 1956 | } |
| 1970 | 1957 | |
| 1971 | 1958 | READ8_MEMBER(gb_state::gb_video_r) |
| r20640 | r20641 | |
| 2003 | 1990 | |
| 2004 | 1991 | WRITE8_MEMBER(gb_state::gb_video_w) |
| 2005 | 1992 | { |
| 2006 | | gb_state *state = machine().driver_data<gb_state>(); |
| 2007 | 1993 | switch (offset) |
| 2008 | 1994 | { |
| 2009 | 1995 | case 0x00: /* LCDC - LCD Control */ |
| r20640 | r20641 | |
| 2022 | 2008 | /* If LCD is being switched on */ |
| 2023 | 2009 | if ( !( LCDCONT & 0x80 ) && ( data & 0x80 ) ) |
| 2024 | 2010 | { |
| 2025 | | gb_lcd_switch_on(machine()); |
| 2011 | gb_lcd_switch_on(); |
| 2026 | 2012 | } |
| 2027 | 2013 | break; |
| 2028 | 2014 | case 0x01: /* STAT - LCD Status */ |
| r20640 | r20641 | |
| 2056 | 2042 | ( ( LCDSTAT & 0x60 ) == 0x20 && ( data & 0x40 ) ) |
| 2057 | 2043 | ) ) |
| 2058 | 2044 | { |
| 2059 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 2045 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 2060 | 2046 | } |
| 2061 | 2047 | /* |
| 2062 | 2048 | - 0x20 -> 0x08/0x18/0x28/0x48 (mode 0, after m2int) - trigger |
| r20640 | r20641 | |
| 2065 | 2051 | */ |
| 2066 | 2052 | if ( m_lcd.mode_irq && m_lcd.mode == 0 ) |
| 2067 | 2053 | { |
| 2068 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 2054 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 2069 | 2055 | } |
| 2070 | 2056 | } |
| 2071 | 2057 | break; |
| r20640 | r20641 | |
| 2082 | 2068 | /* Generate lcd interrupt if requested */ |
| 2083 | 2069 | if ( LCDSTAT & 0x40 ) |
| 2084 | 2070 | { |
| 2085 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 2071 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 2086 | 2072 | } |
| 2087 | 2073 | } |
| 2088 | 2074 | } |
| r20640 | r20641 | |
| 2102 | 2088 | } |
| 2103 | 2089 | return; |
| 2104 | 2090 | case 0x07: /* BGP - Background Palette */ |
| 2105 | | (*update_scanline)(machine()); |
| 2091 | (this->*update_scanline)(); |
| 2106 | 2092 | m_lcd.gb_bpal[0] = data & 0x3; |
| 2107 | 2093 | m_lcd.gb_bpal[1] = (data & 0xC) >> 2; |
| 2108 | 2094 | m_lcd.gb_bpal[2] = (data & 0x30) >> 4; |
| 2109 | 2095 | m_lcd.gb_bpal[3] = (data & 0xC0) >> 6; |
| 2110 | 2096 | break; |
| 2111 | 2097 | case 0x08: /* OBP0 - Object Palette 0 */ |
| 2112 | | // (*update_scanline)( machine ); |
| 2098 | // (this->*update_scanline)(); |
| 2113 | 2099 | m_lcd.gb_spal0[0] = data & 0x3; |
| 2114 | 2100 | m_lcd.gb_spal0[1] = (data & 0xC) >> 2; |
| 2115 | 2101 | m_lcd.gb_spal0[2] = (data & 0x30) >> 4; |
| 2116 | 2102 | m_lcd.gb_spal0[3] = (data & 0xC0) >> 6; |
| 2117 | 2103 | break; |
| 2118 | 2104 | case 0x09: /* OBP1 - Object Palette 1 */ |
| 2119 | | // (*update_scanline)( machine ); |
| 2105 | // (this->*update_scanline)(); |
| 2120 | 2106 | m_lcd.gb_spal1[0] = data & 0x3; |
| 2121 | 2107 | m_lcd.gb_spal1[1] = (data & 0xC) >> 2; |
| 2122 | 2108 | m_lcd.gb_spal1[2] = (data & 0x30) >> 4; |
| r20640 | r20641 | |
| 2124 | 2110 | break; |
| 2125 | 2111 | case 0x02: /* SCY - Scroll Y */ |
| 2126 | 2112 | case 0x03: /* SCX - Scroll X */ |
| 2127 | | (*update_scanline)(machine()); |
| 2113 | (this->*update_scanline)(); |
| 2128 | 2114 | case 0x0A: /* WY - Window Y position */ |
| 2129 | 2115 | case 0x0B: /* WX - Window X position */ |
| 2130 | 2116 | break; |
| r20640 | r20641 | |
| 2156 | 2142 | |
| 2157 | 2143 | WRITE8_MEMBER(gb_state::gbc_video_w) |
| 2158 | 2144 | { |
| 2159 | | gb_state *state = machine().driver_data<gb_state>(); |
| 2160 | 2145 | switch( offset ) |
| 2161 | 2146 | { |
| 2162 | 2147 | case 0x00: /* LCDC - LCD Control */ |
| r20640 | r20641 | |
| 2179 | 2164 | /* If LCD is being switched on */ |
| 2180 | 2165 | if ( !( LCDCONT & 0x80 ) && ( data & 0x80 ) ) |
| 2181 | 2166 | { |
| 2182 | | gb_lcd_switch_on(machine()); |
| 2167 | gb_lcd_switch_on(); |
| 2183 | 2168 | } |
| 2184 | 2169 | break; |
| 2185 | 2170 | case 0x01: /* STAT - LCD Status */ |
| r20640 | r20641 | |
| 2191 | 2176 | */ |
| 2192 | 2177 | if ( m_lcd.mode_irq && m_lcd.mode == 0 && ( LCDSTAT & 0x28 ) == 0x20 && ( data & 0x08 ) ) |
| 2193 | 2178 | { |
| 2194 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 2179 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 2195 | 2180 | } |
| 2196 | 2181 | /* Check if line irqs are being disabled */ |
| 2197 | 2182 | if ( ! ( data & 0x40 ) ) |
| r20640 | r20641 | |
| 2204 | 2189 | if ( CMPLINE == CURLINE ) |
| 2205 | 2190 | { |
| 2206 | 2191 | m_lcd.line_irq = 1; |
| 2207 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 2192 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 2208 | 2193 | } |
| 2209 | 2194 | } |
| 2210 | 2195 | } |
| r20640 | r20641 | |
| 2219 | 2204 | /* Generate lcd interrupt if requested */ |
| 2220 | 2205 | if ( LCDSTAT & 0x40 ) |
| 2221 | 2206 | { |
| 2222 | | machine().device("maincpu")->execute().set_input_line(LCD_INT, ASSERT_LINE ); |
| 2207 | m_maincpu->set_input_line(LCD_INT, ASSERT_LINE ); |
| 2223 | 2208 | } |
| 2224 | 2209 | } |
| 2225 | 2210 | else |
| r20640 | r20641 | |
| 2231 | 2216 | } |
| 2232 | 2217 | break; |
| 2233 | 2218 | case 0x07: /* BGP - GB background palette */ |
| 2234 | | (*update_scanline)(machine()); |
| 2219 | (this->*update_scanline)(); |
| 2235 | 2220 | m_lcd.gb_bpal[0] = data & 0x3; |
| 2236 | 2221 | m_lcd.gb_bpal[1] = (data & 0xC) >> 2; |
| 2237 | 2222 | m_lcd.gb_bpal[2] = (data & 0x30) >> 4; |
| r20640 | r20641 | |
| 2278 | 2263 | else |
| 2279 | 2264 | { |
| 2280 | 2265 | /* General DMA */ |
| 2281 | | gbc_hdma( machine(), ((data & 0x7F) + 1) * 0x10 ); |
| 2266 | gbc_hdma( ((data & 0x7F) + 1) * 0x10 ); |
| 2282 | 2267 | // cpunum_set_reg( 0, LR35902_DMA_CYCLES, 4 + ( ( ( data & 0x7F ) + 1 ) * 32 ) ); |
| 2283 | 2268 | data = 0xff; |
| 2284 | 2269 | } |
| r20640 | r20641 | |
| 2292 | 2277 | /* Check if HDMA should be immediately performed */ |
| 2293 | 2278 | if ( m_lcd.hdma_possible ) |
| 2294 | 2279 | { |
| 2295 | | gbc_hdma( machine(), 0x10 ); |
| 2280 | gbc_hdma( 0x10 ); |
| 2296 | 2281 | // cpunum_set_reg( 0, LR35902_DMA_CYCLES, 36 ); |
| 2297 | 2282 | m_lcd.hdma_possible = 0; |
| 2298 | 2283 | } |
| r20640 | r20641 | |
| 2378 | 2363 | m_lcd.gb_vid_regs[offset] = data; |
| 2379 | 2364 | } |
| 2380 | 2365 | |
| 2381 | | |
| 2382 | | UINT8 *gb_get_vram_ptr(running_machine &machine) |
| 2383 | | { |
| 2384 | | gb_state *state = machine.driver_data<gb_state>(); |
| 2385 | | return state->m_lcd.gb_vram_ptr; |
| 2386 | | } |